Démarrage rapide

Ce guide de démarrage rapide présente le processus d’utilisation de l’application Web d'AutoML Tables permettant d'effectuer les tâches suivantes :

  • Créer un ensemble de données
  • Importer des données de table à partir d'un fichier CSV dans l'ensemble de données
  • Identifier les colonnes du schéma dans les données importées
  • Entraîner un modèle à partir des données importées
  • Utilisez le modèle pour réaliser des prédictions

L'ensemble du processus prend quelques heures. La plupart des étapes se déroulant sans votre intervention, vous pouvez fermer la fenêtre du navigateur et revenir sur la tâche plus tard.

Avant de commencer

Créer un projet et activer AutoML Tables

  1. Connectez-vous à votre compte Google.

    Si vous n'en possédez pas déjà un, vous devez en créer un.

  2. Dans Cloud Console, sur la page de sélection du projet, sélectionnez ou créez un projet Cloud.

    Accéder à la page de sélection du projet

  3. Vérifiez que la facturation est activée pour votre projet Google Cloud. Découvrez comment vérifier que la facturation est activée pour votre projet.

  4. Activer les API Cloud AutoML and Storage.

    Activer les API

Exemples de données

Ce démarrage rapide utilise l'ensemble de données Open Source Bank Marketing, disponible via une licence Creative Commons CCO: Public Domain. Les noms de colonne ont été mis à jour pour plus de clarté.

Créer un ensemble de données et entraîner un modèle

  1. Accédez à la page AutoML Tables dans Google Cloud Console pour lancer la procédure de création de votre ensemble de données et d'entraînement de votre modèle.

    Accéder à la page AutoML Tables

  2. Cliquez sur Ensembles de données, puis sur Nouvel ensemble de données.

    Page des ensembles de données de tableaux AutoML

  3. Saisissez Quickstart_Dataset comme nom de l'ensemble de données, puis cliquez sur Créer un ensemble de données.

  4. Sur la page Import your data (Importer vos données), choisissez l'option Select a CSV file from Cloud Storage (Sélectionner un fichier CSV dans Cloud Storage).

    Laissez le champ Location (Emplacement) défini sur Global.

  5. Saisissez cloud-ml-tables-data/bank-marketing.csv comme bucket.

  6. Cliquez sur Importer.

    Page

    L’importation de l'ensemble de données prend quelques minutes.

  7. Une fois l'importation de l'ensemble de données terminée, choisissez l'option Deposit comme Target column (Colonne cible).

    La colonne cible identifie la valeur sur laquelle le modèle sera entraîné pour la prédiction.

    Page

    Cette fenêtre fournit des informations sur les données importées. Cliquez sur des lignes individuelles pour accéder aux détails de distribution et de corrélation d'une caractéristique spécifique.

    Détails d'une ligne d'ensemble de données

  8. Cliquez sur Train model (Entraîner le modèle). Saisissez Quickstart_Model comme Model name (Nom du modèle) et 1 comme Training budget (Budget d'entraînement).

    Page

  9. Cliquez sur Train model (Entraîner le modèle) pour lancer le processus d'entraînement.

    L'entraînement du modèle prend environ deux heures. Une fois l'entraînement terminé, des métriques de haut niveau du modèle s'affichent dans l'onglet Models.

    Métriques de haut niveau d'un modèle entraîné

  10. Ouvrez l'onglet Evaluate (Évaluation) pour afficher une vue détaillée des métriques d'évaluation du modèle.

    Dans cet exemple, 1 représente un résultat négatif : un dépôt n’a pas été effectué à la banque. 2 représente un résultat positif : un dépôt a été effectué à la banque.

    Cliquez sur une étiquette pour afficher les métriques d'évaluation associées. Vous pouvez également ajuster le paramètre Score threshold (Seuil de score) pour consulter les différences entre les métriques selon les valeurs de seuil.

    Page

    Vous pouvez également faire défiler l'écran vers le bas pour afficher la matrice de confusion et le graphe d'importance des caractéristiques.

    Matrice de confusion et graphe d'importance des caractéristiques

  11. Cliquez sur l'onglet Test & Use (Test et utilisation), puis sur Online Prediction (Prédiction en ligne).

  12. Cliquez sur Deploy model (Déployer le modèle) pour déployer votre modèle.

    Vous devez déployer le modèle avant de pouvoir demander des prédictions en ligne. Le déploiement d'un modèle prend quelques minutes.

    Bouton de déploiement AutoML Tables

    Lorsque le modèle est déployé, AutoML Tables remplit des exemples de données pour vous aider à tester votre modèle.

  13. Cochez l'option Generate feature importance (Générer l'importance des caractéristiques).

  14. Cliquez sur Predict (Prédire) pour demander la prédiction en ligne.

    Bouton

    AutoML Tables détermine la probabilité de chaque résultat possible en fonction des valeurs d'entrée et affiche les valeurs du niveau de confiance de la prédiction dans la section Prediction result (Résultats de la prédiction).

    Résultats de la prédiction avec importance des caractéristiques

    Dans l'exemple ci-dessus, le modèle prédit le résultat "1" avec une certitude de 99,8 %.

    Vous pouvez également envoyer des requêtes de prédiction par lot. En savoir plus

Effectuer un nettoyage

Si vous n'avez plus besoin de votre modèle personnalisé ou de votre ensemble de données, vous pouvez les supprimer.

Pour éviter d'encourir des frais inutiles liés à Google Cloud Platform, supprimez votre projet à l'aide de Cloud Console si vous n'en avez plus besoin.

Annuler le déploiement du modèle

Des frais vous sont facturés pour le déploiement du modèle. Pour les éviter :

  1. Cliquez sur Models (Modèles), puis sur le modèle dont vous souhaitez annuler le déploiement.
  2. Cliquez sur l'onglet Test & Use (Test et utilisation), puis sur Online prediction (Prédiction en ligne).
  3. Cliquez sur Remove deployment (Supprimer le déploiement).

Annuler le déploiement du modèle

Supprimer un modèle

Pour supprimer un modèle, cliquez sur Models (Modèles). Ouvrez le menu "Autres actions" pour sélectionner le modèle que vous souhaitez supprimer, puis cliquez sur Delete model (Supprimer le modèle).

Supprimer un modèle

Supprimer un ensemble de données

Pour supprimer un ensemble de données, ouvrez l'onglet Datasets (Ensembles de données). Ouvrez le menu "Autres actions" correspondant au modèle que vous souhaitez supprimer, puis cliquez sur Delete dataset (Supprimer l'ensemble de données).

Supprimer un ensemble de données

Étapes suivantes