Exporter des éléments vers BigQuery

Exportez un inventaire d'éléments vers BigQuery.

En savoir plus

Pour obtenir une documentation détaillée incluant cet exemple de code, consultez les articles suivants :

Exemple de code

Go

Pour savoir comment installer et utiliser la bibliothèque cliente pour Cloud Asset Inventory, consultez la page Bibliothèques clientes Cloud Asset Inventory.

Pour vous authentifier auprès de Cloud Asset Inventory, configurez le service Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.


// Sample asset-quickstart exports assets to given bigquery table.
package main

import (
	"context"
	"fmt"
	"log"
	"os"
	"strings"

	asset "cloud.google.com/go/asset/apiv1"
	"cloud.google.com/go/asset/apiv1/assetpb"
)

func main() {
	ctx := context.Background()
	projectID := os.Getenv("GOOGLE_CLOUD_PROJECT")
	client, err := asset.NewClient(ctx)
	if err != nil {
		log.Fatalf("asset.NewClient: %v", err)
	}
	defer client.Close()
	datasetID := strings.Replace(fmt.Sprintf("%s-for-assets", projectID), "-", "_", -1)
	dataset := fmt.Sprintf("projects/%s/datasets/%s", projectID, datasetID)
	req := &assetpb.ExportAssetsRequest{
		Parent: fmt.Sprintf("projects/%s", projectID),
		OutputConfig: &assetpb.OutputConfig{
			Destination: &assetpb.OutputConfig_BigqueryDestination{
				BigqueryDestination: &assetpb.BigQueryDestination{
					Dataset: dataset,
					Table:   "test",
					Force:   true,
				},
			},
		},
	}
	op, err := client.ExportAssets(ctx, req)
	if err != nil {
		log.Fatalf("ExportAssets: %v", err)
	}
	resp, err := op.Wait(ctx)
	if err != nil {
		log.Fatalf("Wait: %v", err)
	}
	fmt.Print(resp)
}

Java

Pour savoir comment installer et utiliser la bibliothèque cliente pour inventaire des éléments cloud, consultez Bibliothèques clientes Cloud Asset Inventory.

Pour vous authentifier auprès de l'inventaire des éléments cloud, configurez les identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.

// Imports the Google Cloud client library

import com.google.cloud.ServiceOptions;
import com.google.cloud.asset.v1.AssetServiceClient;
import com.google.cloud.asset.v1.BigQueryDestination;
import com.google.cloud.asset.v1.ContentType;
import com.google.cloud.asset.v1.ExportAssetsRequest;
import com.google.cloud.asset.v1.ExportAssetsRequest.Builder;
import com.google.cloud.asset.v1.ExportAssetsResponse;
import com.google.cloud.asset.v1.OutputConfig;
import com.google.cloud.asset.v1.PartitionSpec;
import com.google.cloud.asset.v1.ProjectName;
import java.io.IOException;
import java.util.Arrays;
import java.util.concurrent.ExecutionException;

public class ExportAssetsBigqueryExample {

  // Use the default project Id.
  private static final String projectId = ServiceOptions.getDefaultProjectId();

  /** 
   * Export assets to BigQuery for a project.

   * @param bigqueryDataset which dataset the results will be exported to
   * @param bigqueryTable which table the results will be exported to
   * @param contentType determines the schema for the table
   * @param assetTypes a list of asset types to export. if empty, export all.
   * @param isPerType separate BigQuery tables for each resource type
   */
  public static void exportBigQuery(String bigqueryDataset, String bigqueryTable,
      ContentType contentType, String[] assetTypes, boolean isPerType)
      throws IOException, IllegalArgumentException, InterruptedException, ExecutionException {
    try (AssetServiceClient client = AssetServiceClient.create()) {
      ProjectName parent = ProjectName.of(projectId);
      OutputConfig outputConfig;
      // Outputs to per-type BigQuery table.
      if (isPerType) {
        outputConfig =
            OutputConfig.newBuilder()
                .setBigqueryDestination(
                    BigQueryDestination.newBuilder()
                        .setDataset(bigqueryDataset)
                        .setTable(bigqueryTable)
                        .setForce(true)
                        .setSeparateTablesPerAssetType(true)
                        .setPartitionSpec(
                            PartitionSpec.newBuilder()
                                .setPartitionKey(PartitionSpec.PartitionKey.READ_TIME)
                                .build())
                        .build())
                .build();
      } else {
        outputConfig =
            OutputConfig.newBuilder()
                .setBigqueryDestination(
                    BigQueryDestination.newBuilder()
                        .setDataset(bigqueryDataset)
                        .setTable(bigqueryTable)
                        .setForce(true)
                        .build())
                .build();
      }
      Builder exportAssetsRequestBuilder = ExportAssetsRequest.newBuilder()
          .setParent(parent.toString()).setContentType(contentType).setOutputConfig(outputConfig);
      if (assetTypes.length > 0) {
        exportAssetsRequestBuilder.addAllAssetTypes(Arrays.asList(assetTypes));
      }
      ExportAssetsRequest request = exportAssetsRequestBuilder.build();
      ExportAssetsResponse response = client.exportAssetsAsync(request).get();
      System.out.println(response);
    }
  }
}

Node.js

Pour savoir comment installer et utiliser la bibliothèque cliente pour inventaire des éléments cloud, consultez Bibliothèques clientes Cloud Asset Inventory.

Pour vous authentifier auprès de Cloud Asset Inventory, configurez le service Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.

/**
 * TODO(developer): Uncomment these variables before running the sample.
 */
// const dataSet = 'projects/project_id/datasets/dataset_id';
// const table = 'mytable';

const {AssetServiceClient} = require('@google-cloud/asset');
const client = new AssetServiceClient();

async function exportAssetsBigquery() {
  const projectId = await client.getProjectId();
  const projectResource = client.projectPath(projectId);
  const dataset = dataSet;

  const request = {
    parent: projectResource,
    outputConfig: {
      bigqueryDestination: {
        dataset: `projects/${projectId}/${dataset}`,
        table: table,
        force: true,
      },
    },
  };

  // Handle the operation using the promise pattern.
  const [operation] = await client.exportAssets(request);

  // Operation#promise starts polling for the completion of the operation.
  const [result] = await operation.promise();

  // Do things with with the response.
  console.log(result);
}

exportAssetsBigquery();

Python

Pour savoir comment installer et utiliser la bibliothèque cliente pour Cloud Asset Inventory, consultez la page Bibliothèques clientes Cloud Asset Inventory.

Pour vous authentifier auprès de l'inventaire des éléments cloud, configurez les identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.

from google.cloud import asset_v1

# TODO project_id = 'Your Google Cloud Project ID'
# TODO dataset = 'Your BigQuery dataset path'
# TODO table = 'Your BigQuery table name'
# TODO content_type ="Content type to export"

client = asset_v1.AssetServiceClient()
parent = f"projects/{project_id}"
output_config = asset_v1.OutputConfig()
output_config.bigquery_destination.dataset = dataset
output_config.bigquery_destination.table = table
output_config.bigquery_destination.force = True
response = client.export_assets(
    request={
        "parent": parent,
        "content_type": content_type,
        "output_config": output_config,
    }
)
print(response.result())

Étapes suivantes

Pour rechercher et filtrer des exemples de code pour d'autres produits Google Cloud, consultez l'explorateur d'exemples Google Cloud.