Der ScaNN-Index verwendet die auf der Baumquantisierung basierende Indexierung, bei der Indizes einen Suchbaum zusammen mit einer Quantisierungs- oder Hash-Funktion lernen. Wenn Sie eine Abfrage ausführen, wird der Suchbaum verwendet, um den Suchraum zu verkleinern, während die Quantisierung zur Komprimierung der Indexgröße verwendet wird. Durch diese Bereinigung wird die Berechnung der Ähnlichkeit – also der Distanz – zwischen dem Abfragevektor und den Datenbankvektoren beschleunigt.
Um sowohl eine hohe QPS-Rate (Queries per Second, Abfragen pro Sekunde) als auch einen hohen Recall bei Ihren Nearest-Neighbor-Abfragen zu erzielen, müssen Sie den Baum Ihres ScaNN-Index so partitionieren, dass er am besten zu Ihren Daten und Abfragen passt.
Mit hochdimensionalen Einbettungsmodellen lässt sich ein Großteil der Informationen bei einer viel geringeren Dimensionalität beibehalten. So können Sie beispielsweise 90% der Informationen mit nur 20% der Dimensionen des Einbettungsvektors beibehalten. Um die Verarbeitung solcher Datasets zu beschleunigen, wird im AlloyDB AI ScaNN-Index automatisch eine Dimensionsreduzierung mithilfe der Hauptkomponentenanalyse (Principal Component Analysis, PCA) für die indexierten Vektoren durchgeführt. Dadurch wird die CPU- und Speicherauslastung für die Vektorsuche weiter reduziert. Weitere Informationen finden Sie unter scann.enable_pca.
Da die Dimensionsreduzierung zu einem geringfügigen Recall-Verlust im Index führt, wird dieser Verlust im AlloyDB AI ScaNN-Index dadurch kompensiert, dass zuerst ein Ranking-Schritt mit einer größeren Anzahl von PCA-Vektorkandidaten aus dem Index durchgeführt wird. Anschließend werden die PCA-Vektorkandidaten von ScaNN anhand der Originalvektoren neu eingestuft.
Weitere Informationen finden Sie unter scann.pre_reordering_num_neighbors.
[[["Leicht verständlich","easyToUnderstand","thumb-up"],["Mein Problem wurde gelöst","solvedMyProblem","thumb-up"],["Sonstiges","otherUp","thumb-up"]],[["Schwer verständlich","hardToUnderstand","thumb-down"],["Informationen oder Beispielcode falsch","incorrectInformationOrSampleCode","thumb-down"],["Benötigte Informationen/Beispiele nicht gefunden","missingTheInformationSamplesINeed","thumb-down"],["Problem mit der Übersetzung","translationIssue","thumb-down"],["Sonstiges","otherDown","thumb-down"]],["Zuletzt aktualisiert: 2025-09-05 (UTC)."],[[["\u003cp\u003eScaNN index employs tree-quantization to accelerate vector similarity scoring by pruning the search space and compressing index size.\u003c/p\u003e\n"],["\u003cp\u003eOptimal tree partitioning in ScaNN is crucial for achieving high query-per-second rates and recall in nearest-neighbor queries.\u003c/p\u003e\n"],["\u003cp\u003eAlloyDB ScaNN automatically reduces dimensionality using Principal Component Analysis (PCA) to enhance speed and minimize resource consumption for high-dimensional embedding datasets.\u003c/p\u003e\n"],["\u003cp\u003eAlloyDB ScaNN compensates for recall loss from PCA by initially ranking a larger pool of PCA'ed vector candidates and subsequently re-ranking them using the original vectors.\u003c/p\u003e\n"]]],[],null,["Select a documentation version: 15.7.0keyboard_arrow_down\n\n- [Current (16.8.0)](/alloydb/omni/current/docs/ai/scann-vector-query-perf-overview)\n- [16.8.0](/alloydb/omni/16.8.0/docs/ai/scann-vector-query-perf-overview)\n- [16.3.0](/alloydb/omni/16.3.0/docs/ai/scann-vector-query-perf-overview)\n- [15.12.0](/alloydb/omni/15.12.0/docs/ai/scann-vector-query-perf-overview)\n- [15.7.1](/alloydb/omni/15.7.1/docs/ai/scann-vector-query-perf-overview)\n- [15.7.0](/alloydb/omni/15.7.0/docs/ai/scann-vector-query-perf-overview)\n\n\u003cbr /\u003e\n\nThis page provides a conceptual overview of improving vector query performance using AlloyDB AI's Scalable Nearest Neighbor (ScaNN) index. For more information, see [Create indexes and query vectors](/alloydb/omni/15.7.0/docs/ai/store-index-query-vectors?resource=scann).\n\n\u003cbr /\u003e\n\nThe ScaNN index uses tree-quantization-based indexing, in which indexes learn\na search tree together with a quantization (or hashing) function. When you run\na query, the search tree is used to prune the\nsearch space, while quantization is used to compress the index size. This pruning\nspeeds up the scoring of the similarity---in other words, the distance---between\nthe query vector and the database vectors.\n\nTo achieve both a high query-per-second rate (QPS)\nand a high recall with your nearest-neighbor queries, you must partition\nthe tree of your ScaNN index in a way that is most appropriate to your data\nand your queries.\n\nHigh-dimensional embedding models can retain much of the information at much\nlower dimensionality. For example, you can retain 90% of the information with\nonly 20% of the embedding's dimensions. To help speed up such datasets,\nthe AlloyDB AI ScaNN index automatically performs dimension reduction\nusing [Principal Component Analysis](https://en.wikipedia.org/wiki/Principal_component_analysis)\n(PCA) on the indexed vectors, which further reduces CPU and memory usage for\nthe vector search. For more information, see\n[`scann.enable_pca`](/alloydb/omni/15.7.0/docs/reference/scann-index-reference).\n\nBecause dimension reduction causes minor recall loss in the index, the\nAlloyDB AI ScaNN index compensates for recall loss\nby first performing a ranking\nstep with a larger number of PCAed vector candidates from the index. Then,\nScaNN re-ranks the PCAed vector candidates by the original vectors.\nFor more information, see [`scann.pre_reordering_num_neighbors`](/alloydb/omni/15.7.0/docs/reference/scann-index-reference).\n\nWhat's next\n\n- Learn [best practices for tuning ScaNN indexes](/alloydb/omni/15.7.0/docs/ai/best-practices-tuning-scann).\n- [Get started with vector embeddings using AlloyDB AI](https://codelabs.developers.google.com/alloydb-ai-embedding#0).\n- Learn more about the [AlloyDB AI ScaNN index](https://cloud.google.com/blog/products/databases/understanding-the-scann-index-in-alloydb?e=48754805)."]]