Konektor untuk Vertex AI
Tetap teratur dengan koleksi
Simpan dan kategorikan konten berdasarkan preferensi Anda.
Konektor Workflows yang menentukan fungsi bawaan yang digunakan untuk mengakses Vertex AI dalam alur kerja.
Mempelajari lebih lanjut
Untuk dokumentasi mendetail yang menyertakan contoh kode ini, lihat artikel berikut:
Contoh kode
Kecuali dinyatakan lain, konten di halaman ini dilisensikan berdasarkan Lisensi Creative Commons Attribution 4.0, sedangkan contoh kode dilisensikan berdasarkan Lisensi Apache 2.0. Untuk mengetahui informasi selengkapnya, lihat Kebijakan Situs Google Developers. Java adalah merek dagang terdaftar dari Oracle dan/atau afiliasinya.
[[["Mudah dipahami","easyToUnderstand","thumb-up"],["Memecahkan masalah saya","solvedMyProblem","thumb-up"],["Lainnya","otherUp","thumb-up"]],[["Sulit dipahami","hardToUnderstand","thumb-down"],["Informasi atau kode contoh salah","incorrectInformationOrSampleCode","thumb-down"],["Informasi/contoh yang saya butuhkan tidak ada","missingTheInformationSamplesINeed","thumb-down"],["Masalah terjemahan","translationIssue","thumb-down"],["Lainnya","otherDown","thumb-down"]],[],[],[],null,["# Connector for Vertex AI\n\nWorkflows connector that defines the built-in function used to access Vertex AI within a workflow.\n\nExplore further\n---------------\n\n\nFor detailed documentation that includes this code sample, see the following:\n\n- [Vertex AI API Connector Overview](/workflows/docs/reference/googleapis/aiplatform/Overview)\n\nCode sample\n-----------\n\n### YAML\n\n # This workflow demonstrates how to use the aiplatform (Vertex AI) connector.\n # This workflow creates a Vertex AI custom Job and then deletes the\n # job once the long-running operation of creating the job completes.\n # Expected successful output: \"SUCCESS\"\n main:\n steps:\n - init:\n assign:\n - location: ${sys.get_env(\"GOOGLE_CLOUD_LOCATION\")}\n - project: ${sys.get_env(\"GOOGLE_CLOUD_PROJECT_ID\")}\n # Follow https://cloud.google.com/vertex-ai/docs/training/create-custom-container to build\n # a custom container image for training.\n - container_image_uri: \"IMAGE_URI\"\n - create_custom_job:\n call: googleapis.aiplatform.v1.projects.locations.customJobs.create\n args:\n parent: ${\"projects/\" + project + \"/locations/\" + location}\n region: ${location}\n body:\n displayName: \"example-custom-job\"\n jobSpec:\n workerPoolSpecs:\n - machineSpec:\n machineType: \"n1-standard-4\"\n acceleratorType: \"NVIDIA_TESLA_V100\"\n acceleratorCount: 1\n replicaCount: 1\n containerSpec:\n imageUri: ${container_image_uri}\n command: []\n args: []\n result: customJobsResponse\n - delete_custom_job:\n call: googleapis.aiplatform.v1.projects.locations.customJobs.delete\n args:\n name: ${customJobsResponse.name}\n region: ${location}\n result: deleteCustomJobResponse\n - return:\n return: \"SUCCESS\"\n\nWhat's next\n-----------\n\n\nTo search and filter code samples for other Google Cloud products, see the\n[Google Cloud sample browser](/docs/samples?product=workflows)."]]