Esegui un flusso di lavoro utilizzando le librerie client di Cloud

Questa guida rapida mostra come eseguire un flusso di lavoro e visualizzare i risultati dell'esecuzione utilizzando le librerie client Cloud.

Per saperne di più sull'installazione delle librerie client di Cloud e sulla configurazione dell'ambiente di sviluppo, consulta la panoramica delle librerie client di Workflows.

Puoi completare i seguenti passaggi utilizzando Google Cloud CLI nel terminale o in Cloud Shell.

Prima di iniziare

I vincoli di sicurezza definiti dalla tua organizzazione potrebbero impedirti di completare i passaggi seguenti. Per informazioni sulla risoluzione dei problemi, vedi Sviluppare applicazioni in un ambiente Google Cloud vincolato.

  1. Sign in to your Google Cloud account. If you're new to Google Cloud, create an account to evaluate how our products perform in real-world scenarios. New customers also get $300 in free credits to run, test, and deploy workloads.
  2. Install the Google Cloud CLI.

  3. Se utilizzi un provider di identità (IdP) esterno, devi prima accedere alla gcloud CLI con la tua identità federata.

  4. Per inizializzare gcloud CLI, esegui questo comando:

    gcloud init
  5. Create or select a Google Cloud project.

    • Create a Google Cloud project:

      gcloud projects create PROJECT_ID

      Replace PROJECT_ID with a name for the Google Cloud project you are creating.

    • Select the Google Cloud project that you created:

      gcloud config set project PROJECT_ID

      Replace PROJECT_ID with your Google Cloud project name.

  6. Verify that billing is enabled for your Google Cloud project.

  7. Enable the Workflows API:

    gcloud services enable workflows.googleapis.com
  8. Set up authentication:

    1. Create the service account:

      gcloud iam service-accounts create SERVICE_ACCOUNT_NAME

      Replace SERVICE_ACCOUNT_NAME with a name for the service account.

    2. Grant the roles/owner IAM role to the service account:

      gcloud projects add-iam-policy-binding PROJECT_ID --member="serviceAccount:SERVICE_ACCOUNT_NAME@PROJECT_ID.iam.gserviceaccount.com" --role=roles/owner

      Replace the following:

      • SERVICE_ACCOUNT_NAME: the name of the service account
      • PROJECT_ID: the project ID where you created the service account
  9. Install the Google Cloud CLI.

  10. Se utilizzi un provider di identità (IdP) esterno, devi prima accedere alla gcloud CLI con la tua identità federata.

  11. Per inizializzare gcloud CLI, esegui questo comando:

    gcloud init
  12. Create or select a Google Cloud project.

    • Create a Google Cloud project:

      gcloud projects create PROJECT_ID

      Replace PROJECT_ID with a name for the Google Cloud project you are creating.

    • Select the Google Cloud project that you created:

      gcloud config set project PROJECT_ID

      Replace PROJECT_ID with your Google Cloud project name.

  13. Verify that billing is enabled for your Google Cloud project.

  14. Enable the Workflows API:

    gcloud services enable workflows.googleapis.com
  15. Set up authentication:

    1. Create the service account:

      gcloud iam service-accounts create SERVICE_ACCOUNT_NAME

      Replace SERVICE_ACCOUNT_NAME with a name for the service account.

    2. Grant the roles/owner IAM role to the service account:

      gcloud projects add-iam-policy-binding PROJECT_ID --member="serviceAccount:SERVICE_ACCOUNT_NAME@PROJECT_ID.iam.gserviceaccount.com" --role=roles/owner

      Replace the following:

      • SERVICE_ACCOUNT_NAME: the name of the service account
      • PROJECT_ID: the project ID where you created the service account
  16. (Facoltativo) Per inviare i log a Cloud Logging, concedi il ruolo roles/logging.logWriter all'account di servizio.

    gcloud projects add-iam-policy-binding PROJECT_ID \
        --member "serviceAccount:SERVICE_ACCOUNT_NAME@PROJECT_ID.iam.gserviceaccount.com" \
        --role "roles/logging.logWriter"

    Per scoprire di più sui ruoli e sulle autorizzazioni dei account di servizio, consulta Concedi l'autorizzazione dei workflow per l'accesso alle Google Cloud risorse.

  17. Se necessario, scarica e installa lo strumento di gestione del codice sorgente Git.
  18. Esegui il deployment di un flusso di lavoro di esempio

    Dopo aver definito un flusso di lavoro, lo esegui il deployment per renderlo disponibile per l'esecuzione. Il passaggio di deployment verifica anche che il file di origine possa essere eseguito.

    Il seguente flusso di lavoro invia una richiesta a un'API pubblica e poi restituisce la risposta dell'API.

    1. Crea un file di testo con il nome file myFirstWorkflow.yaml con il seguente contenuto:

      # This workflow accepts an optional "searchTerm" argument for the Wikipedia API.
      # If no input arguments are provided or "searchTerm" is absent,
      # it will fetch the day of the week in Amsterdam and use it as the search term.
      
      main:
          params: [input]
          steps:
          - validateSearchTermAndRedirectToReadWikipedia:
              switch:
                  - condition: '${map.get(input, "searchTerm") != null}'
                    assign:
                      - searchTerm: '${input.searchTerm}'
                    next: readWikipedia
          - getCurrentTime:
              call: http.get
              args:
                  url: https://timeapi.io/api/Time/current/zone?timeZone=Europe/Amsterdam
              result: currentTime
          - setFromCallResult:
              assign:
                  - searchTerm: '${currentTime.body.dayOfWeek}'
          - readWikipedia:
              call: http.get
              args:
                  url: 'https://en.wikipedia.org/w/api.php'
                  query:
                      action: opensearch
                      search: '${searchTerm}'
              result: wikiResult
          - returnOutput:
                  return: '${wikiResult.body[1]}'
    2. Dopo aver creato il flusso di lavoro, puoi eseguirne il deployment, ma non eseguirlo:

      gcloud workflows deploy myFirstWorkflow \
          --source=myFirstWorkflow.yaml \
          --service-account=SERVICE_ACCOUNT_NAME@PROJECT_ID.iam.gserviceaccount.com \
          --location=CLOUD_REGION

      Sostituisci CLOUD_REGION con una posizione supportata per il flusso di lavoro. La regione predefinita utilizzata negli esempi di codice è us-central1.

    recupera il codice campione

    Puoi clonare il codice campione da GitHub.

    1. Clona il repository dell'app di esempio sulla tua macchina locale:

      C#

      git clone https://github.com/GoogleCloudPlatform/dotnet-docs-samples.git

      In alternativa, puoi scaricare il campione come file ZIP ed estrarlo.

      Vai

      git clone https://github.com/GoogleCloudPlatform/golang-samples.git

      In alternativa, puoi scaricare il campione come file ZIP ed estrarlo.

      Java

      git clone https://github.com/GoogleCloudPlatform/java-docs-samples.git

      In alternativa, puoi scaricare il campione come file ZIP ed estrarlo.

      Node.js

      git clone https://github.com/GoogleCloudPlatform/nodejs-docs-samples.git

      In alternativa, puoi scaricare il campione come file ZIP ed estrarlo.

      Python

      git clone https://github.com/GoogleCloudPlatform/python-docs-samples.git

      In alternativa, puoi scaricare il campione come file ZIP ed estrarlo.

    2. Passa alla directory che contiene il codice campione di Workflows:

      C#

      cd dotnet-docs-samples/workflows/api/Workflow.Samples/

      Vai

      cd golang-samples/workflows/executions/

      Java

      cd java-docs-samples/workflows/cloud-client/

      Node.js

      cd nodejs-docs-samples/workflows/quickstart/

      Python

      cd python-docs-samples/workflows/cloud-client/

    3. Dai un'occhiata al codice campione. Ogni app di esempio esegue le seguenti operazioni:

      1. Configura le librerie client Cloud per Workflows.
      2. Esegue un flusso di lavoro.
      3. Esegue il polling dell'esecuzione del flusso di lavoro (utilizzando il backoff esponenziale) fino al termine dell'esecuzione.
      4. Stampa i risultati dell'esecuzione.

      C#

      
      using Google.Cloud.Workflows.Common.V1;
      using Google.Cloud.Workflows.Executions.V1;
      using System;
      using System.Threading;
      using System.Threading.Tasks;
      
      public class ExecuteWorkflowSample
      {
          /// <summary>
          /// Execute a workflow and return the execution operation.
          /// </summary>
          /// <param name="projectID">Your Google Cloud Project ID.</param>
          /// <param name="locationID">The region where your workflow is located.</param>
          /// <param name="workflowID">Your Workflow ID.</param>
          /// <returns>
          /// An Execute object representing the completed workflow execution.
          /// </returns>
          public async Task<Execution> ExecuteWorkflow(
              string projectId = "YOUR-PROJECT-ID",
              string locationID = "YOUR-LOCATION-ID",
              string workflowID = "YOUR-WORKFLOW-ID")
          {
              // Initialize the client.
              ExecutionsClient client = await ExecutionsClient.CreateAsync();
      
              // Build the parent location path.
              WorkflowName parent = new WorkflowName(projectId, locationID, workflowID);
      
              // Create an execution request.
              CreateExecutionRequest createExecutionRequest = new CreateExecutionRequest
              {
                  ParentAsWorkflowName = parent,
              };
      
              // Execute the operation.
              Execution execution = await client.CreateExecutionAsync(createExecutionRequest);
              Console.WriteLine("- Execution started...");
      
              TimeSpan backoffDelay = TimeSpan.FromSeconds(1);
              TimeSpan maxBackoffDelay = TimeSpan.FromSeconds(16);
      
              // Keep polling the state until the execution finishes, using exponential backoff.
              while (execution.State == Execution.Types.State.Active)
              {
                  await Task.Delay(backoffDelay);
      
                  // Implement exponential backoff by doubling the delay, but limiting it to a practical duration.
                  backoffDelay = (backoffDelay < maxBackoffDelay) ? backoffDelay * 2 : maxBackoffDelay;
      
                  execution = await client.GetExecutionAsync(execution.Name);
              }
      
              // Print results.
              Console.WriteLine($"Execution finished with state: {execution.State}");
              Console.WriteLine($"Execution results: {execution.Result}");
      
              // Return the fetched execution.
              return execution;
          }
      }

      Go

      import (
      	"context"
      	"fmt"
      	"io"
      	"time"
      
      	workflowexecutions "google.golang.org/api/workflowexecutions/v1"
      )
      
      // Execute a workflow and print the execution results.
      //
      // For more information about Workflows see:
      // https://cloud.google.com/workflows/docs/overview
      func executeWorkflow(w io.Writer, projectID, workflowID, locationID string) error {
      	// TODO(developer): Uncomment and update the following lines:
      	// projectID := "YOUR_PROJECT_ID"
      	// workflowID := "YOUR_WORKFLOW_ID"
      	// locationID := "YOUR_LOCATION_ID"
      
      	ctx := context.Background()
      
      	// Construct the location path.
      	parent := fmt.Sprintf("projects/%s/locations/%s/workflows/%s", projectID, locationID, workflowID)
      
      	// Create execution client.
      	client, err := workflowexecutions.NewService(ctx)
      	if err != nil {
      		return fmt.Errorf("workflowexecutions.NewService error: %w", err)
      	}
      
      	// Get execution service.
      	service := client.Projects.Locations.Workflows.Executions
      
      	// Build and run the new workflow execution.
      	res, err := service.Create(parent, &workflowexecutions.Execution{}).Do()
      	if err != nil {
      		return fmt.Errorf("service.Create.Do error: %w", err)
      	}
      	fmt.Fprintln(w, "- Execution started...")
      
      	// Set initial value for backoff delay in one second.
      	backoffDelay := time.Second
      
      	for res.State == "ACTIVE" {
      		time.Sleep(backoffDelay)
      
      		// Request the updated state for the execution.
      		getReq := service.Get(res.Name)
      		res, err = getReq.Do()
      		if err != nil {
      			return fmt.Errorf("getReq error: %w", err)
      		}
      
      		// Double the delay to provide exponential backoff (capped at 16 seconds).
      		if backoffDelay < time.Second*16 {
      			backoffDelay *= 2
      		}
      	}
      
      	fmt.Fprintf(w, "Execution finished with state: %s\n", res.State)
      	fmt.Fprintf(w, "Execution results: %s\n", res.Result)
      
      	return nil
      }
      

      Java

      // Imports the Google Cloud client library
      
      import com.google.cloud.workflows.executions.v1.CreateExecutionRequest;
      import com.google.cloud.workflows.executions.v1.Execution;
      import com.google.cloud.workflows.executions.v1.ExecutionsClient;
      import com.google.cloud.workflows.executions.v1.WorkflowName;
      import java.io.IOException;
      import java.util.concurrent.ExecutionException;
      
      public class WorkflowsQuickstart {
      
        private static final String PROJECT = System.getenv("GOOGLE_CLOUD_PROJECT");
        private static final String LOCATION = System.getenv().getOrDefault("LOCATION", "us-central1");
        private static final String WORKFLOW =
            System.getenv().getOrDefault("WORKFLOW", "myFirstWorkflow");
      
        public static void main(String... args)
            throws IOException, InterruptedException, ExecutionException {
          if (PROJECT == null) {
            throw new IllegalArgumentException(
                "Environment variable 'GOOGLE_CLOUD_PROJECT' is required to run this quickstart.");
          }
          workflowsQuickstart(PROJECT, LOCATION, WORKFLOW);
        }
      
        private static volatile boolean finished;
      
        public static void workflowsQuickstart(String projectId, String location, String workflow)
            throws IOException, InterruptedException, ExecutionException {
          // Initialize client that will be used to send requests. This client only needs
          // to be created once, and can be reused for multiple requests. After completing all of your
          // requests, call the "close" method on the client to safely clean up any remaining background
          // resources.
          try (ExecutionsClient executionsClient = ExecutionsClient.create()) {
            // Construct the fully qualified location path.
            WorkflowName parent = WorkflowName.of(projectId, location, workflow);
      
            // Creates the execution object.
            CreateExecutionRequest request =
                CreateExecutionRequest.newBuilder()
                    .setParent(parent.toString())
                    .setExecution(Execution.newBuilder().build())
                    .build();
            Execution response = executionsClient.createExecution(request);
      
            String executionName = response.getName();
            System.out.printf("Created execution: %s%n", executionName);
      
            long backoffTime = 0;
            long backoffDelay = 1_000; // Start wait with delay of 1,000 ms
            final long backoffTimeout = 10 * 60 * 1_000; // Time out at 10 minutes
            System.out.println("Poll for results...");
      
            // Wait for execution to finish, then print results.
            while (!finished && backoffTime < backoffTimeout) {
              Execution execution = executionsClient.getExecution(executionName);
              finished = execution.getState() != Execution.State.ACTIVE;
      
              // If we haven't seen the results yet, wait.
              if (!finished) {
                System.out.println("- Waiting for results");
                Thread.sleep(backoffDelay);
                backoffTime += backoffDelay;
                backoffDelay *= 2; // Double the delay to provide exponential backoff.
              } else {
                System.out.println("Execution finished with state: " + execution.getState().name());
                System.out.println("Execution results: " + execution.getResult());
              }
            }
          }
        }
      }

      Node.js

      const {ExecutionsClient} = require('@google-cloud/workflows');
      const client = new ExecutionsClient();
      /**
       * TODO(developer): Uncomment these variables before running the sample.
       */
      // const projectId = 'my-project';
      // const location = 'us-central1';
      // const workflow = 'myFirstWorkflow';
      // const searchTerm = '';
      
      /**
       * Executes a Workflow and waits for the results with exponential backoff.
       * @param {string} projectId The Google Cloud Project containing the workflow
       * @param {string} location The workflow location
       * @param {string} workflow The workflow name
       * @param {string} searchTerm Optional search term to pass to the Workflow as a runtime argument
       */
      async function executeWorkflow(projectId, location, workflow, searchTerm) {
        /**
         * Sleeps the process N number of milliseconds.
         * @param {Number} ms The number of milliseconds to sleep.
         */
        function sleep(ms) {
          return new Promise(resolve => {
            setTimeout(resolve, ms);
          });
        }
        const runtimeArgs = searchTerm ? {searchTerm: searchTerm} : {};
        // Execute workflow
        try {
          const createExecutionRes = await client.createExecution({
            parent: client.workflowPath(projectId, location, workflow),
            execution: {
              // Runtime arguments can be passed as a JSON string
              argument: JSON.stringify(runtimeArgs),
            },
          });
          const executionName = createExecutionRes[0].name;
          console.log(`Created execution: ${executionName}`);
      
          // Wait for execution to finish, then print results.
          let executionFinished = false;
          let backoffDelay = 1000; // Start wait with delay of 1,000 ms
          console.log('Poll every second for result...');
          while (!executionFinished) {
            const [execution] = await client.getExecution({
              name: executionName,
            });
            executionFinished = execution.state !== 'ACTIVE';
      
            // If we haven't seen the result yet, wait a second.
            if (!executionFinished) {
              console.log('- Waiting for results...');
              await sleep(backoffDelay);
              backoffDelay *= 2; // Double the delay to provide exponential backoff.
            } else {
              console.log(`Execution finished with state: ${execution.state}`);
              console.log(execution.result);
              return execution.result;
            }
          }
        } catch (e) {
          console.error(`Error executing workflow: ${e}`);
        }
      }
      
      executeWorkflow(projectId, location, workflowName, searchTerm).catch(err => {
        console.error(err.message);
        process.exitCode = 1;
      });
      

      Python

      import time
      
      from google.cloud import workflows_v1
      from google.cloud.workflows import executions_v1
      
      from google.cloud.workflows.executions_v1.types import executions
      
      # TODO(developer): Update and uncomment the following lines.
      # project_id = "YOUR_PROJECT_ID"
      # location = "YOUR_LOCATION"  # For example: us-central1
      # workflow_id = "YOUR_WORKFLOW_ID"  # For example: myFirstWorkflow
      
      # Initialize API clients.
      execution_client = executions_v1.ExecutionsClient()
      workflows_client = workflows_v1.WorkflowsClient()
      
      # Construct the fully qualified location path.
      parent = workflows_client.workflow_path(project_id, location, workflow_id)
      
      # Execute the workflow.
      response = execution_client.create_execution(request={"parent": parent})
      print(f"Created execution: {response.name}")
      
      # Wait for execution to finish, then print results.
      execution_finished = False
      backoff_delay = 1  # Start wait with delay of 1 second.
      print("Poll for result...")
      
      # Keep polling the state until the execution finishes,
      # using exponential backoff.
      while not execution_finished:
          execution = execution_client.get_execution(
              request={"name": response.name}
          )
          execution_finished = execution.state != executions.Execution.State.ACTIVE
      
          # If we haven't seen the result yet, keep waiting.
          if not execution_finished:
              print("- Waiting for results...")
              time.sleep(backoff_delay)
              # Double the delay to provide exponential backoff.
              backoff_delay *= 2
          else:
              print(f"Execution finished with state: {execution.state.name}")
              print(f"Execution results: {execution.result}")

    Esegui il codice campione

    Puoi eseguire il codice campione ed eseguire il flusso di lavoro. L'esecuzione di un flusso di lavoro esegue la definizione del flusso di lavoro di cui è stato eseguito il deployment associata al flusso di lavoro.

    1. Per eseguire l'esempio, installa prima le dipendenze:

      C#

      dotnet restore

      Vai

      go mod download

      Java

      mvn compile

      Node.js

      npm install -D tsx

      Python

      pip3 install -r requirements.txt

    2. Esegui lo script:

      C#

      GOOGLE_CLOUD_PROJECT=PROJECT_ID LOCATION=CLOUD_REGION WORKFLOW=WORKFLOW_NAME dotnet run

      Vai

      GOOGLE_CLOUD_PROJECT=PROJECT_ID LOCATION=CLOUD_REGION WORKFLOW=WORKFLOW_NAME go run .

      Java

      GOOGLE_CLOUD_PROJECT=PROJECT_ID LOCATION=CLOUD_REGION WORKFLOW=WORKFLOW_NAME mvn compile exec:java -Dexec.mainClass=com.example.workflows.WorkflowsQuickstart

      Node.js

      npx tsx index.js

      Python

      GOOGLE_CLOUD_PROJECT=PROJECT_ID LOCATION=CLOUD_REGION WORKFLOW=WORKFLOW_NAME python3 main.py

      Sostituisci quanto segue:

      • PROJECT_ID: il nome del tuo progetto Google Cloud
      • CLOUD_REGION: la posizione del flusso di lavoro (valore predefinito: us-central1)
      • WORKFLOW_NAME: il nome del flusso di lavoro (valore predefinito: myFirstWorkflow)

      L'output è simile al seguente:

      Execution finished with state: SUCCEEDED
      Execution results: ["Thursday","Thursday Night Football","Thursday (band)","Thursday Island","Thursday (album)","Thursday Next","Thursday at the Square","Thursday's Child (David Bowie song)","Thursday Afternoon","Thursday (film)"]
      

    Passare dati in una richiesta di esecuzione

    A seconda del linguaggio della libreria client, puoi anche passare un argomento di runtime in una richiesta di esecuzione. Ad esempio:

    C#

    
    public class ExecuteWorkflowWithArgumentsSample
    {
        /// <summary>
        /// Execute a workflow with arguments and return the execution operation.
        /// </summary>
        /// <param name="projectID">Your Google Cloud Project ID.</param>
        /// <param name="locationID">The region where your workflow is located.</param>
        /// <param name="workflowID">Your Workflow ID.</param>
        /// <returns>
        /// An Execute object representing the completed workflow execution.
        /// </returns>
        public async Task<Execution> ExecuteWorkflowWithArguments(
            string projectId = "YOUR-PROJECT-ID",
            string locationID = "YOUR-LOCATION-ID",
            string workflowID = "YOUR-WORKFLOW-ID")
        {
            // Initialize the client.
            ExecutionsClient client = await ExecutionsClient.CreateAsync();
    
            // Build the parent location path.
            WorkflowName parent = new WorkflowName(projectId, locationID, workflowID);
    
            // Serialize the argument.
            string argument = JsonSerializer.Serialize(new
            {
                searchTerm = "Cloud"
            });
    
            // Create an execution request.
            CreateExecutionRequest createExecutionRequest = new CreateExecutionRequest
            {
                ParentAsWorkflowName = parent,
                Execution = new Execution
                {
                    Argument = argument,
                }
            };
    
            // Execute the operation and recieve the execution.
            Execution execution = await client.CreateExecutionAsync(createExecutionRequest);
            Console.WriteLine("- Execution started...");
    
            TimeSpan backoffDelay = TimeSpan.FromSeconds(1);
            TimeSpan maxBackoffDelay = TimeSpan.FromSeconds(16);
    
            // Keep polling the state until the execution finishes, using exponential backoff.
            while (execution.State == Execution.Types.State.Active)
            {
                await Task.Delay(backoffDelay);
    
                // Implement exponential backoff by doubling the delay, but limiting it to a practical duration.
                backoffDelay = (backoffDelay < maxBackoffDelay) ? backoffDelay * 2 : maxBackoffDelay;
    
                execution = await client.GetExecutionAsync(execution.Name);
            }
    
            // Print results.
            Console.WriteLine($"Execution finished with state: {execution.State}");
            Console.WriteLine($"Execution results: {execution.Result}");
    
            // Return the fetched execution.
            return execution;
        }
    }

    Go

    import (
    	"context"
    	"encoding/json"
    	"fmt"
    	"io"
    	"time"
    
    	workflowexecutions "google.golang.org/api/workflowexecutions/v1"
    )
    
    // Execute a workflow with arguments and print the execution results.
    //
    // For more information about Workflows see:
    // https://cloud.google.com/workflows/docs/overview
    func executeWorkflowWithArguments(w io.Writer, projectID, workflowID, locationID string) error {
    	// TODO(developer): Uncomment and update the following lines:
    	// projectID := "YOUR_PROJECT_ID"
    	// workflowID := "YOUR_WORKFLOW_ID"
    	// locationID := "YOUR_LOCATION_ID"
    
    	ctx := context.Background()
    
    	// Construct the location path.
    	parent := fmt.Sprintf("projects/%s/locations/%s/workflows/%s", projectID, locationID, workflowID)
    
    	// Create execution client.
    	client, err := workflowexecutions.NewService(ctx)
    	if err != nil {
    		return fmt.Errorf("workflowexecutions.NewService error: %w", err)
    	}
    
    	// Get execution service.
    	service := client.Projects.Locations.Workflows.Executions
    
    	// Create argument.
    	argument := struct {
    		SearchTerm string `json:"searchTerm"`
    	}{
    		SearchTerm: "Cloud",
    	}
    
    	// Encode argument to JSON.
    	argumentEncoded, err := json.Marshal(argument)
    	if err != nil {
    		return fmt.Errorf("json.Marshal error: %w", err)
    	}
    
    	// Build and run the new workflow execution adding the argument.
    	res, err := service.Create(parent, &workflowexecutions.Execution{
    		Argument: string(argumentEncoded),
    	}).Do()
    	if err != nil {
    		return fmt.Errorf("service.Create.Do error: %w", err)
    	}
    	fmt.Fprintln(w, "- Execution started...")
    
    	// Set initial value for backoff delay in one second.
    	backoffDelay := time.Second
    
    	for res.State == "ACTIVE" {
    		time.Sleep(backoffDelay)
    
    		// Request the updated state for the execution.
    		getReq := service.Get(res.Name)
    		res, err = getReq.Do()
    		if err != nil {
    			return fmt.Errorf("getReq error: %w", err)
    		}
    
    		// Double the delay to provide exponential backoff (capped at 16 seconds).
    		if backoffDelay < time.Second*16 {
    			backoffDelay *= 2
    		}
    	}
    
    	fmt.Fprintf(w, "Execution finished with state: %s\n", res.State)
    	fmt.Fprintf(w, "Execution arguments: %s", res.Argument)
    	fmt.Fprintf(w, "Execution results: %s\n", res.Result)
    
    	return nil
    }
    

    Java

    // Creates the execution object
    CreateExecutionRequest request =
        CreateExecutionRequest.newBuilder()
            .setParent(parent.toString())
            .setExecution(Execution.newBuilder().setArgument("{\"searchTerm\":\"Friday\"}").build())
            .build();
    

    Node.js

    // Execute workflow
    try {
      const createExecutionRes = await client.createExecution({
        parent: client.workflowPath(projectId, location, workflow),
        execution: {
          argument: JSON.stringify({"searchTerm": "Friday"})
        }
    });
    const executionName = createExecutionRes[0].name;
    

    Python

    import time
    
    from google.cloud import workflows_v1
    from google.cloud.workflows import executions_v1
    
    from google.cloud.workflows.executions_v1.types import executions
    
    # TODO(developer): Update and uncomment the following lines.
    # project_id = "YOUR_PROJECT_ID"
    # location = "YOUR_LOCATION"  # For example: us-central1
    # workflow_id = "YOUR_WORKFLOW_ID"  # For example: myFirstWorkflow
    
    # Initialize API clients.
    execution_client = executions_v1.ExecutionsClient()
    workflows_client = workflows_v1.WorkflowsClient()
    
    # Construct the fully qualified location path.
    parent = workflows_client.workflow_path(project_id, location, workflow_id)
    
    # Execute the workflow adding an dictionary of arguments.
    # Find more information about the Execution object here:
    # https://cloud.google.com/python/docs/reference/workflows/latest/google.cloud.workflows.executions_v1.types.Execution
    execution = executions_v1.Execution(
        name=parent,
        argument='{"searchTerm": "Cloud"}',
    )
    
    response = execution_client.create_execution(
        parent=parent,
        execution=execution,
    )
    print(f"Created execution: {response.name}")
    
    # Wait for execution to finish, then print results.
    execution_finished = False
    backoff_delay = 1  # Start wait with delay of 1 second.
    print("Poll for result...")
    
    # Keep polling the state until the execution finishes,
    # using exponential backoff.
    while not execution_finished:
        execution = execution_client.get_execution(
            request={"name": response.name}
        )
        execution_finished = execution.state != executions.Execution.State.ACTIVE
    
        # If we haven't seen the result yet, keep waiting.
        if not execution_finished:
            print("- Waiting for results...")
            time.sleep(backoff_delay)
            # Double the delay to provide exponential backoff.
            backoff_delay *= 2
        else:
            print(f"Execution finished with state: {execution.state.name}")
            print(f"Execution results: {execution.result}")

    Per maggiori informazioni sul passaggio di argomenti di runtime, consulta Passaggio di argomenti di runtime in una richiesta di esecuzione.

    Esegui la pulizia

    Per evitare che al tuo account Google Cloud vengano addebitati costi relativi alle risorse utilizzate in questa pagina, elimina il progetto Google Cloud con le risorse.

    1. Elimina il flusso di lavoro creato:

      gcloud workflows delete myFirstWorkflow
      
    2. Quando ti viene chiesto se vuoi continuare, digita y.

    Il flusso di lavoro viene eliminato.

    Passaggi successivi