使用 Cloud 客户端库执行工作流

本快速入门介绍如何使用 Cloud 客户端库执行工作流和查看执行结果。

如需详细了解如何安装 Cloud 客户端库和设置开发环境,请参阅 Workflows 客户端库概览

您可以在终端或 Cloud Shell 中使用 Google Cloud CLI 完成以下步骤。

准备工作

您的组织定义的安全限制条件可能会导致您无法完成以下步骤。如需了解相关问题排查信息,请参阅在受限的 Google Cloud 环境中开发应用

  1. Sign in to your Google Cloud account. If you're new to Google Cloud, create an account to evaluate how our products perform in real-world scenarios. New customers also get $300 in free credits to run, test, and deploy workloads.
  2. Install the Google Cloud CLI.
  3. To initialize the gcloud CLI, run the following command:

    gcloud init
  4. Create or select a Google Cloud project.

    • Create a Google Cloud project:

      gcloud projects create PROJECT_ID

      Replace PROJECT_ID with a name for the Google Cloud project you are creating.

    • Select the Google Cloud project that you created:

      gcloud config set project PROJECT_ID

      Replace PROJECT_ID with your Google Cloud project name.

  5. Make sure that billing is enabled for your Google Cloud project.

  6. Enable the Workflows API:

    gcloud services enable workflows.googleapis.com
  7. Set up authentication:

    1. Create the service account:

      gcloud iam service-accounts create SERVICE_ACCOUNT_NAME

      Replace SERVICE_ACCOUNT_NAME with a name for the service account.

    2. Grant the roles/owner IAM role to the service account:

      gcloud projects add-iam-policy-binding PROJECT_ID --member="serviceAccount:SERVICE_ACCOUNT_NAME@PROJECT_ID.iam.gserviceaccount.com" --role=roles/owner

      Replace the following:

      • SERVICE_ACCOUNT_NAME: the name of the service account
      • PROJECT_ID: the project ID where you created the service account
  8. Install the Google Cloud CLI.
  9. To initialize the gcloud CLI, run the following command:

    gcloud init
  10. Create or select a Google Cloud project.

    • Create a Google Cloud project:

      gcloud projects create PROJECT_ID

      Replace PROJECT_ID with a name for the Google Cloud project you are creating.

    • Select the Google Cloud project that you created:

      gcloud config set project PROJECT_ID

      Replace PROJECT_ID with your Google Cloud project name.

  11. Make sure that billing is enabled for your Google Cloud project.

  12. Enable the Workflows API:

    gcloud services enable workflows.googleapis.com
  13. Set up authentication:

    1. Create the service account:

      gcloud iam service-accounts create SERVICE_ACCOUNT_NAME

      Replace SERVICE_ACCOUNT_NAME with a name for the service account.

    2. Grant the roles/owner IAM role to the service account:

      gcloud projects add-iam-policy-binding PROJECT_ID --member="serviceAccount:SERVICE_ACCOUNT_NAME@PROJECT_ID.iam.gserviceaccount.com" --role=roles/owner

      Replace the following:

      • SERVICE_ACCOUNT_NAME: the name of the service account
      • PROJECT_ID: the project ID where you created the service account
  14. (可选)如需将日志发送到 Cloud Logging,请向服务账号授予 roles/logging.logWriter 角色。

    gcloud projects add-iam-policy-binding PROJECT_ID \
        --member "serviceAccount:SERVICE_ACCOUNT_NAME@PROJECT_ID.iam.gserviceaccount.com" \
        --role "roles/logging.logWriter"

    如需详细了解服务账号角色和权限,请参阅授予工作流访问Google Cloud 资源的权限

  15. 根据需要,下载并安装 Git 源代码管理工具。

部署示例工作流

定义工作流后,可以进行部署,使其可以执行。部署步骤还会验证源文件是否可以执行。

以下工作流会向公共 API 发送请求,然后返回该 API 的响应。

  1. 创建一个文件名为 myFirstWorkflow.yaml 且包含以下内容的文本文件:

    - getCurrentTime:
        call: http.get
        args:
          url: https://timeapi.io/api/Time/current/zone?timeZone=Europe/Amsterdam
        result: currentTime
    - readWikipedia:
        call: http.get
        args:
          url: https://en.wikipedia.org/w/api.php
          query:
            action: opensearch
            search: ${currentTime.body.dayOfWeek}
        result: wikiResult
    - returnResult:
        return: ${wikiResult.body[1]}
  2. 创建工作流后,您可以对其进行部署,但不要执行工作流

    gcloud workflows deploy myFirstWorkflow \
        --source=myFirstWorkflow.yaml \
        --service-account=SERVICE_ACCOUNT_NAME@PROJECT_ID.iam.gserviceaccount.com \
        --location=CLOUD_REGION

    CLOUD_REGION 替换为工作流的受支持的位置。代码示例中使用的默认区域为 us-central1

获取示例代码

您可以从 GitHub 克隆示例代码。

  1. 将示例应用代码库克隆到本地机器:

    Java

    git clone https://github.com/GoogleCloudPlatform/java-docs-samples.git

    或者,您也可以下载该示例的 zip 文件并将其解压缩。

    Node.js

    git clone https://github.com/GoogleCloudPlatform/nodejs-docs-samples.git

    或者,您也可以下载该示例的 zip 文件并将其解压缩。

    Python

    git clone https://github.com/GoogleCloudPlatform/python-docs-samples.git

    或者,您也可以下载该示例的 zip 文件并将其解压缩。

  2. 切换到包含工作流示例代码的目录:

    Java

    cd java-docs-samples/workflows/cloud-client/

    Node.js

    cd nodejs-docs-samples/workflows/quickstart/

    Python

    cd python-docs-samples/workflows/cloud-client/

  3. 查看示例代码。每个示例应用都会执行以下操作:

    1. 为工作流设置 Cloud 客户端库。
    2. 执行工作流。
    3. 轮询工作流的执行(使用指数退避算法),直到执行终止为止。
    4. 打印执行结果。

    Java

    // Imports the Google Cloud client library
    
    import com.google.cloud.workflows.executions.v1.CreateExecutionRequest;
    import com.google.cloud.workflows.executions.v1.Execution;
    import com.google.cloud.workflows.executions.v1.ExecutionsClient;
    import com.google.cloud.workflows.executions.v1.WorkflowName;
    import java.io.IOException;
    import java.util.concurrent.ExecutionException;
    
    public class WorkflowsQuickstart {
    
      private static final String PROJECT = System.getenv("GOOGLE_CLOUD_PROJECT");
      private static final String LOCATION = System.getenv().getOrDefault("LOCATION", "us-central1");
      private static final String WORKFLOW =
          System.getenv().getOrDefault("WORKFLOW", "myFirstWorkflow");
    
      public static void main(String... args)
          throws IOException, InterruptedException, ExecutionException {
        if (PROJECT == null) {
          throw new IllegalArgumentException(
              "Environment variable 'GOOGLE_CLOUD_PROJECT' is required to run this quickstart.");
        }
        workflowsQuickstart(PROJECT, LOCATION, WORKFLOW);
      }
    
      private static volatile boolean finished;
    
      public static void workflowsQuickstart(String projectId, String location, String workflow)
          throws IOException, InterruptedException, ExecutionException {
        // Initialize client that will be used to send requests. This client only needs
        // to be created once, and can be reused for multiple requests. After completing all of your
        // requests, call the "close" method on the client to safely clean up any remaining background
        // resources.
        try (ExecutionsClient executionsClient = ExecutionsClient.create()) {
          // Construct the fully qualified location path.
          WorkflowName parent = WorkflowName.of(projectId, location, workflow);
    
          // Creates the execution object.
          CreateExecutionRequest request =
              CreateExecutionRequest.newBuilder()
                  .setParent(parent.toString())
                  .setExecution(Execution.newBuilder().build())
                  .build();
          Execution response = executionsClient.createExecution(request);
    
          String executionName = response.getName();
          System.out.printf("Created execution: %s%n", executionName);
    
          long backoffTime = 0;
          long backoffDelay = 1_000; // Start wait with delay of 1,000 ms
          final long backoffTimeout = 10 * 60 * 1_000; // Time out at 10 minutes
          System.out.println("Poll for results...");
    
          // Wait for execution to finish, then print results.
          while (!finished && backoffTime < backoffTimeout) {
            Execution execution = executionsClient.getExecution(executionName);
            finished = execution.getState() != Execution.State.ACTIVE;
    
            // If we haven't seen the results yet, wait.
            if (!finished) {
              System.out.println("- Waiting for results");
              Thread.sleep(backoffDelay);
              backoffTime += backoffDelay;
              backoffDelay *= 2; // Double the delay to provide exponential backoff.
            } else {
              System.out.println("Execution finished with state: " + execution.getState().name());
              System.out.println("Execution results: " + execution.getResult());
            }
          }
        }
      }
    }

    Node.js

    const {ExecutionsClient} = require('@google-cloud/workflows');
    const client = new ExecutionsClient();
    /**
     * TODO(developer): Uncomment these variables before running the sample.
     */
    // const projectId = 'my-project';
    // const location = 'us-central1';
    // const workflow = 'myFirstWorkflow';
    // const searchTerm = '';
    
    /**
     * Executes a Workflow and waits for the results with exponential backoff.
     * @param {string} projectId The Google Cloud Project containing the workflow
     * @param {string} location The workflow location
     * @param {string} workflow The workflow name
     * @param {string} searchTerm Optional search term to pass to the Workflow as a runtime argument
     */
    async function executeWorkflow(projectId, location, workflow, searchTerm) {
      /**
       * Sleeps the process N number of milliseconds.
       * @param {Number} ms The number of milliseconds to sleep.
       */
      function sleep(ms) {
        return new Promise(resolve => {
          setTimeout(resolve, ms);
        });
      }
      const runtimeArgs = searchTerm ? {searchTerm: searchTerm} : {};
      // Execute workflow
      try {
        const createExecutionRes = await client.createExecution({
          parent: client.workflowPath(projectId, location, workflow),
          execution: {
            // Runtime arguments can be passed as a JSON string
            argument: JSON.stringify(runtimeArgs),
          },
        });
        const executionName = createExecutionRes[0].name;
        console.log(`Created execution: ${executionName}`);
    
        // Wait for execution to finish, then print results.
        let executionFinished = false;
        let backoffDelay = 1000; // Start wait with delay of 1,000 ms
        console.log('Poll every second for result...');
        while (!executionFinished) {
          const [execution] = await client.getExecution({
            name: executionName,
          });
          executionFinished = execution.state !== 'ACTIVE';
    
          // If we haven't seen the result yet, wait a second.
          if (!executionFinished) {
            console.log('- Waiting for results...');
            await sleep(backoffDelay);
            backoffDelay *= 2; // Double the delay to provide exponential backoff.
          } else {
            console.log(`Execution finished with state: ${execution.state}`);
            console.log(execution.result);
            return execution.result;
          }
        }
      } catch (e) {
        console.error(`Error executing workflow: ${e}`);
      }
    }
    
    executeWorkflow(projectId, location, workflowName, searchTerm).catch(err => {
      console.error(err.message);
      process.exitCode = 1;
    });
    

    Python

    import os
    import time
    
    from google.cloud import workflows_v1
    from google.cloud.workflows import executions_v1
    from google.cloud.workflows.executions_v1 import Execution
    from google.cloud.workflows.executions_v1.types import executions
    
    PROJECT = os.getenv("GOOGLE_CLOUD_PROJECT")
    LOCATION = os.getenv("LOCATION", "us-central1")
    WORKFLOW_ID = os.getenv("WORKFLOW", "myFirstWorkflow")
    
    
    def execute_workflow(project: str, location: str, workflow: str) -> Execution:
        """Execute a workflow and print the execution results.
    
        A workflow consists of a series of steps described
        using the Workflows syntax, and can be written in either YAML or JSON.
    
        Args:
            project: The Google Cloud project id
                which contains the workflow to execute.
            location: The location for the workflow
            workflow: The ID of the workflow to execute.
    
        Returns:
            The execution response.
        """
        # Set up API clients.
        execution_client = executions_v1.ExecutionsClient()
        workflows_client = workflows_v1.WorkflowsClient()
    
        # Construct the fully qualified location path.
        parent = workflows_client.workflow_path(project, location, workflow)
    
        # Execute the workflow.
        response = execution_client.create_execution(request={"parent": parent})
        print(f"Created execution: {response.name}")
    
        # Wait for execution to finish, then print results.
        execution_finished = False
        backoff_delay = 1  # Start wait with delay of 1 second
        print("Poll for result...")
        while not execution_finished:
            execution = execution_client.get_execution(
                request={"name": response.name}
            )
            execution_finished = execution.state != executions.Execution.State.ACTIVE
    
            # If we haven't seen the result yet, wait a second.
            if not execution_finished:
                print("- Waiting for results...")
                time.sleep(backoff_delay)
                # Double the delay to provide exponential backoff.
                backoff_delay *= 2
            else:
                print(f"Execution finished with state: {execution.state.name}")
                print(f"Execution results: {execution.result}")
                return execution
    
    
    if __name__ == "__main__":
        assert PROJECT, "'GOOGLE_CLOUD_PROJECT' environment variable not set."
        execute_workflow(PROJECT, LOCATION, WORKFLOW_ID)

运行示例代码

您可以运行示例代码并执行工作流。执行某个工作流会运行与该工作流关联的已部署工作流定义。

  1. 要运行示例,请先安装依赖项:

    Java

    mvn compile

    Node.js

    npm install -D tsx

    Python

    pip3 install -r requirements.txt

  2. 运行脚本:

    Java

    GOOGLE_CLOUD_PROJECT=PROJECT_ID LOCATION=CLOUD_REGION WORKFLOW=WORKFLOW_NAME mvn compile exec:java -Dexec.mainClass=com.example.workflows.WorkflowsQuickstart

    Node.js

    npx tsx index.js

    Python

    GOOGLE_CLOUD_PROJECT=PROJECT_ID LOCATION=CLOUD_REGION WORKFLOW=WORKFLOW_NAME python3 main.py

    替换以下内容:

    • PROJECT_ID:您的 Google Cloud 项目名称
    • CLOUD_REGION:工作流的位置(默认值:us-central1
    • WORKFLOW_NAME:您的工作流名称(默认值:myFirstWorkflow

    输出类似于以下内容:

    Execution finished with state: SUCCEEDED
    Execution results: ["Thursday","Thursday Night Football","Thursday (band)","Thursday Island","Thursday (album)","Thursday Next","Thursday at the Square","Thursday's Child (David Bowie song)","Thursday Afternoon","Thursday (film)"]
    

在执行请求中传递数据

根据客户端库语言,您还可以在执行请求中传递运行时参数。例如:

Java

// Creates the execution object.
CreateExecutionRequest request =
    CreateExecutionRequest.newBuilder()
        .setParent(parent.toString())
        .setExecution(Execution.newBuilder().setArgument("{\"searchTerm\":\"Friday\"}").build())
        .build();

Node.js

// Execute workflow
try {
  const createExecutionRes = await client.createExecution({
    parent: client.workflowPath(projectId, location, workflow),
    execution: {
      argument: JSON.stringify({"searchTerm": "Friday"})
    }
});
const executionName = createExecutionRes[0].name;

如需详细了解如何传递运行时参数,请参阅在执行请求中传递运行时参数

清理

为避免因本页面中使用的资源导致您的 Google Cloud 账号产生费用,请删除包含这些资源的 Google Cloud 项目。

  1. 删除您创建的工作流:

    gcloud workflows delete myFirstWorkflow
    
  2. 当系统询问您是否要继续时,请输入 y

工作流已删除。

后续步骤