Cloud Storage의 파일에서 얼굴 인식

Cloud Storage에 저장된 파일에서 얼굴 인식 수행

이 코드 샘플이 포함된 문서 페이지

컨텍스트에서 사용된 코드 샘플을 보려면 다음 문서를 참조하세요.

코드 샘플


이 샘플을 시도하기 전에 Vision 빠른 시작: 클라이언트 라이브러리 사용의 Go 설정 안내를 따르세요. 자세한 내용은 Vision Go API 참조 문서를 참조하세요.

// detectFaces gets faces from the Vision API for an image at the given file path.
func detectFacesURI(w io.Writer, file string) error {
	ctx := context.Background()

	client, err := vision.NewImageAnnotatorClient(ctx)
	if err != nil {
		return err

	image := vision.NewImageFromURI(file)
	annotations, err := client.DetectFaces(ctx, image, nil, 10)
	if err != nil {
		return err
	if len(annotations) == 0 {
		fmt.Fprintln(w, "No faces found.")
	} else {
		fmt.Fprintln(w, "Faces:")
		for i, annotation := range annotations {
			fmt.Fprintln(w, "  Face", i)
			fmt.Fprintln(w, "    Anger:", annotation.AngerLikelihood)
			fmt.Fprintln(w, "    Joy:", annotation.JoyLikelihood)
			fmt.Fprintln(w, "    Surprise:", annotation.SurpriseLikelihood)
	return nil


이 샘플을 시도해 보기 전에 Vision 빠른 시작: 클라이언트 라이브러리 사용의 자바 설정 안내를 따르세요. 자세한 내용은 Vision 자바 API 참조 문서를 확인하세요.

import java.util.ArrayList;
import java.util.List;

public class DetectFacesGcs {

  public static void detectFacesGcs() throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String filePath = "gs://your-gcs-bucket/path/to/image/file.jpg";

  // Detects faces in the specified remote image on Google Cloud Storage.
  public static void detectFacesGcs(String gcsPath) throws IOException {
    List<AnnotateImageRequest> requests = new ArrayList<>();

    ImageSource imgSource = ImageSource.newBuilder().setGcsImageUri(gcsPath).build();
    Image img = Image.newBuilder().setSource(imgSource).build();
    Feature feat = Feature.newBuilder().setType(Feature.Type.FACE_DETECTION).build();

    AnnotateImageRequest request =

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (ImageAnnotatorClient client = ImageAnnotatorClient.create()) {
      BatchAnnotateImagesResponse response = client.batchAnnotateImages(requests);
      List<AnnotateImageResponse> responses = response.getResponsesList();

      for (AnnotateImageResponse res : responses) {
        if (res.hasError()) {
          System.out.format("Error: %s%n", res.getError().getMessage());

        // For full list of available annotations, see
        for (FaceAnnotation annotation : res.getFaceAnnotationsList()) {
              "anger: %s%njoy: %s%nsurprise: %s%nposition: %s",


이 샘플을 시도해 보기 전에 Vision 빠른 시작: 클라이언트 라이브러리 사용의 Node.js 설정 안내를 따르세요. 자세한 내용은 Vision Node.js API 참조 문서를 참조하세요.

// Imports the Google Cloud client libraries
const vision = require('@google-cloud/vision');

// Creates a client
const client = new vision.ImageAnnotatorClient();

 * TODO(developer): Uncomment the following lines before running the sample.
// const bucketName = 'Bucket where the file resides, e.g. my-bucket';
// const fileName = 'Path to file within bucket, e.g. path/to/image.png';

// Performs face detection on the gcs file
const [result] = await client.faceDetection(`gs://${bucketName}/${fileName}`);
const faces = result.faceAnnotations;
faces.forEach((face, i) => {
  console.log(`  Face #${i + 1}:`);
  console.log(`    Joy: ${face.joyLikelihood}`);
  console.log(`    Anger: ${face.angerLikelihood}`);
  console.log(`    Sorrow: ${face.sorrowLikelihood}`);
  console.log(`    Surprise: ${face.surpriseLikelihood}`);


이 샘플을 시도해 보기 전에 Vision 빠른 시작: 클라이언트 라이브러리 사용의 PHP 설정 안내를 따르세요. 자세한 내용은 Vision PHP API 참조 문서를 참조하세요.

namespace Google\Cloud\Samples\Vision;

use Google\Cloud\Vision\V1\ImageAnnotatorClient;

// $path = 'gs://path/to/your/image.jpg'

function detect_face_gcs($path)
    $imageAnnotator = new ImageAnnotatorClient();

    # annotate the image
    $response = $imageAnnotator->faceDetection($path);
    $faces = $response->getFaceAnnotations();

    # names of likelihood from
    $likelihoodName = ['UNKNOWN', 'VERY_UNLIKELY', 'UNLIKELY',

    printf('%d faces found:' . PHP_EOL, count($faces));
    foreach ($faces as $face) {
        $anger = $face->getAngerLikelihood();
        printf('Anger: %s' . PHP_EOL, $likelihoodName[$anger]);

        $joy = $face->getJoyLikelihood();
        printf('Joy: %s' . PHP_EOL, $likelihoodName[$joy]);

        $surprise = $face->getSurpriseLikelihood();
        printf('Surprise: %s' . PHP_EOL, $likelihoodName[$surprise]);

        # get bounds
        $vertices = $face->getBoundingPoly()->getVertices();
        $bounds = [];
        foreach ($vertices as $vertex) {
            $bounds[] = sprintf('(%d,%d)', $vertex->getX(), $vertex->getY());
        print('Bounds: ' . join(', ', $bounds) . PHP_EOL);



이 샘플을 시도해 보기 전에 Vision 빠른 시작: 클라이언트 라이브러리 사용의 Python 설정 안내를 따르세요. 자세한 내용은 Vision Python API 참조 문서를 확인하세요.

def detect_faces_uri(uri):
    """Detects faces in the file located in Google Cloud Storage or the web."""
    from import vision
    client = vision.ImageAnnotatorClient()
    image = vision.Image()
    image.source.image_uri = uri

    response = client.face_detection(image=image)
    faces = response.face_annotations

    # Names of likelihood from
    likelihood_name = ('UNKNOWN', 'VERY_UNLIKELY', 'UNLIKELY', 'POSSIBLE',
                       'LIKELY', 'VERY_LIKELY')

    for face in faces:
        print('anger: {}'.format(likelihood_name[face.anger_likelihood]))
        print('joy: {}'.format(likelihood_name[face.joy_likelihood]))
        print('surprise: {}'.format(likelihood_name[face.surprise_likelihood]))

        vertices = (['({},{})'.format(vertex.x, vertex.y)
                    for vertex in face.bounding_poly.vertices])

        print('face bounds: {}'.format(','.join(vertices)))

    if response.error.message:
        raise Exception(
            '{}\nFor more info on error messages, check: '

다음 단계

다른 Google Cloud 제품의 코드 샘플을 검색하고 필터링하려면 Google Cloud 샘플 브라우저를 참조하세요.