Rilevamento del testo in un documento

Disegna caselle intorno al testo rilevato in un documento.

Per saperne di più

Per la documentazione dettagliata che include questo esempio di codice, consulta quanto segue:

Esempio di codice

Python

Prima di provare questo esempio, segui le istruzioni di configurazione di Python riportate nella guida rapida di Vision con le librerie client. Per ulteriori informazioni, consulta la documentazione di riferimento dell'API Vision Python.

Per autenticarti a Vision, configura le credenziali predefinite dell'applicazione. Per maggiori informazioni, consulta Configurare l'autenticazione per un ambiente di sviluppo locale.

import argparse
from enum import Enum

from google.cloud import vision
from PIL import Image, ImageDraw



class FeatureType(Enum):
    PAGE = 1
    BLOCK = 2
    PARA = 3
    WORD = 4
    SYMBOL = 5


def draw_boxes(image, bounds, color):
    """Draws a border around the image using the hints in the vector list.

    Args:
        image: the input image object.
        bounds: list of coordinates for the boxes.
        color: the color of the box.

    Returns:
        An image with colored bounds added.
    """
    draw = ImageDraw.Draw(image)

    for bound in bounds:
        draw.polygon(
            [
                bound.vertices[0].x,
                bound.vertices[0].y,
                bound.vertices[1].x,
                bound.vertices[1].y,
                bound.vertices[2].x,
                bound.vertices[2].y,
                bound.vertices[3].x,
                bound.vertices[3].y,
            ],
            None,
            color,
        )
    return image


def get_document_bounds(image_file, feature):
    """Finds the document bounds given an image and feature type.

    Args:
        image_file: path to the image file.
        feature: feature type to detect.

    Returns:
        List of coordinates for the corresponding feature type.
    """
    client = vision.ImageAnnotatorClient()

    bounds = []

    with open(image_file, "rb") as image_file:
        content = image_file.read()

    image = vision.Image(content=content)

    response = client.document_text_detection(image=image)
    document = response.full_text_annotation

    # Collect specified feature bounds by enumerating all document features
    for page in document.pages:
        for block in page.blocks:
            for paragraph in block.paragraphs:
                for word in paragraph.words:
                    for symbol in word.symbols:
                        if feature == FeatureType.SYMBOL:
                            bounds.append(symbol.bounding_box)

                    if feature == FeatureType.WORD:
                        bounds.append(word.bounding_box)

                if feature == FeatureType.PARA:
                    bounds.append(paragraph.bounding_box)

            if feature == FeatureType.BLOCK:
                bounds.append(block.bounding_box)

    # The list `bounds` contains the coordinates of the bounding boxes.
    return bounds




def render_doc_text(filein, fileout):
    """Outlines document features (blocks, paragraphs and words) given an image.

    Args:
        filein: path to the input image.
        fileout: path to the output image.
    """
    image = Image.open(filein)
    bounds = get_document_bounds(filein, FeatureType.BLOCK)
    draw_boxes(image, bounds, "blue")
    bounds = get_document_bounds(filein, FeatureType.PARA)
    draw_boxes(image, bounds, "red")
    bounds = get_document_bounds(filein, FeatureType.WORD)
    draw_boxes(image, bounds, "yellow")

    if fileout != 0:
        image.save(fileout)
    else:
        image.show()


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("detect_file", help="The image for text detection.")
    parser.add_argument("-out_file", help="Optional output file", default=0)
    args = parser.parse_args()

    render_doc_text(args.detect_file, args.out_file)

Passaggi successivi

Per cercare e filtrare esempi di codice per altri prodotti Google Cloud, consulta Browser di esempio Google Cloud.