Deteksi teks dalam gambar

Pengenalan Karakter Optik (OCR)

Vision API dapat mendeteksi dan mengekstrak teks dari gambar. Ada dua fitur anotasi yang mendukung pengenalan karakter optik (OCR):

  • TEXT_DETECTION mendeteksi dan mengekstrak teks dari gambar apa pun. Misalnya, foto mungkin berisi rambu jalan atau rambu lalu lintas. JSON mencakup seluruh string yang diekstrak, serta setiap kata, dan kotak pembatasnya.

    Gambar rambu jalan

  • DOCUMENT_TEXT_DETECTION juga mengekstrak teks dari gambar, tetapi responsnya dioptimalkan untuk teks dan dokumen yang padat. JSON mencakup informasi halaman, blok, paragraf, kata, dan jeda.

    Gambar padat dengan anotasi

    Pelajari lebih lanjut tentang DOCUMENT_TEXT_DETECTION untuk ekstraksi tulisan tangan dan ekstraksi teks dari file (PDF/TIFF).

Coba sendiri

Jika Anda baru menggunakan Google Cloud, buat akun untuk mengevaluasi performa Cloud Vision dalam skenario dunia nyata. Pelanggan baru mendapatkan kredit gratis senilai $300 untuk menjalankan, menguji, dan men-deploy workload.

Coba Cloud Vision gratis

Permintaan deteksi teks

Menyiapkan autentikasi dan project Google Cloud Anda

Deteksi teks di gambar lokal

Anda dapat menggunakan Vision API untuk melakukan deteksi fitur pada file gambar lokal.

Untuk permintaan REST, kirim konten file gambar sebagai string yang berenkode base64 dalam isi permintaan Anda.

Untuk gcloud dan permintaan library klien, tentukan jalur ke image lokal dalam permintaan Anda.

gcloud

Untuk melakukan deteksi teks, gunakan perintah gcloud ml vision detect-text seperti ditunjukkan dalam contoh berikut:

gcloud ml vision detect-text ./path/to/local/file.jpg

REST

Sebelum menggunakan salah satu data permintaan, buat penggantian berikut:

  • BASE64_ENCODED_IMAGE: Representasi base64 (string ASCII) dari data gambar biner Anda. String ini akan terlihat seperti string berikut:
    • /9j/4QAYRXhpZgAA...9tAVx/zDQDlGxn//2Q==
    Kunjungi topik enkode base64 untuk informasi selengkapnya.
  • PROJECT_ID: ID project Google Cloud Anda.

Metode HTTP dan URL:

POST https://vision.googleapis.com/v1/images:annotate

Isi JSON permintaan:

{
  "requests": [
    {
      "image": {
        "content": "BASE64_ENCODED_IMAGE"
      },
      "features": [
        {
          "type": "TEXT_DETECTION"
        }
      ]
    }
  ]
}

Untuk mengirim permintaan Anda, pilih salah satu opsi berikut:

curl

Simpan isi permintaan dalam file bernama request.json, dan jalankan perintah berikut:

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "x-goog-user-project: PROJECT_ID" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://vision.googleapis.com/v1/images:annotate"

PowerShell

Simpan isi permintaan dalam file bernama request.json, dan jalankan perintah berikut:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred"; "x-goog-user-project" = "PROJECT_ID" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://vision.googleapis.com/v1/images:annotate" | Select-Object -Expand Content

Jika permintaan berhasil, server akan menampilkan kode status HTTP 200 OK dan respons dalam format JSON.

Respons TEXT_DETECTION berisi frasa yang terdeteksi, kotak pembatasnya, dan setiap kata serta kotak pembatasnya.

Go

Sebelum mencoba contoh ini, ikuti petunjuk penyiapan Go di Panduan memulai Vision menggunakan library klien. Untuk mengetahui informasi selengkapnya, lihat dokumentasi referensi Vision Go API.

Untuk melakukan autentikasi ke Vision, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, lihat Menyiapkan autentikasi untuk lingkungan pengembangan lokal.


// detectText gets text from the Vision API for an image at the given file path.
func detectText(w io.Writer, file string) error {
	ctx := context.Background()

	client, err := vision.NewImageAnnotatorClient(ctx)
	if err != nil {
		return err
	}

	f, err := os.Open(file)
	if err != nil {
		return err
	}
	defer f.Close()

	image, err := vision.NewImageFromReader(f)
	if err != nil {
		return err
	}
	annotations, err := client.DetectTexts(ctx, image, nil, 10)
	if err != nil {
		return err
	}

	if len(annotations) == 0 {
		fmt.Fprintln(w, "No text found.")
	} else {
		fmt.Fprintln(w, "Text:")
		for _, annotation := range annotations {
			fmt.Fprintf(w, "%q\n", annotation.Description)
		}
	}

	return nil
}

Java

Sebelum mencoba contoh ini, ikuti petunjuk penyiapan Java di Panduan Memulai Vision API Menggunakan Library Klien. Untuk mengetahui informasi selengkapnya, lihat dokumentasi referensi Java Vision API.


import com.google.cloud.vision.v1.AnnotateImageRequest;
import com.google.cloud.vision.v1.AnnotateImageResponse;
import com.google.cloud.vision.v1.BatchAnnotateImagesResponse;
import com.google.cloud.vision.v1.EntityAnnotation;
import com.google.cloud.vision.v1.Feature;
import com.google.cloud.vision.v1.Image;
import com.google.cloud.vision.v1.ImageAnnotatorClient;
import com.google.protobuf.ByteString;
import java.io.FileInputStream;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;

public class DetectText {
  public static void detectText() throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String filePath = "path/to/your/image/file.jpg";
    detectText(filePath);
  }

  // Detects text in the specified image.
  public static void detectText(String filePath) throws IOException {
    List<AnnotateImageRequest> requests = new ArrayList<>();

    ByteString imgBytes = ByteString.readFrom(new FileInputStream(filePath));

    Image img = Image.newBuilder().setContent(imgBytes).build();
    Feature feat = Feature.newBuilder().setType(Feature.Type.TEXT_DETECTION).build();
    AnnotateImageRequest request =
        AnnotateImageRequest.newBuilder().addFeatures(feat).setImage(img).build();
    requests.add(request);

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (ImageAnnotatorClient client = ImageAnnotatorClient.create()) {
      BatchAnnotateImagesResponse response = client.batchAnnotateImages(requests);
      List<AnnotateImageResponse> responses = response.getResponsesList();

      for (AnnotateImageResponse res : responses) {
        if (res.hasError()) {
          System.out.format("Error: %s%n", res.getError().getMessage());
          return;
        }

        // For full list of available annotations, see http://g.co/cloud/vision/docs
        for (EntityAnnotation annotation : res.getTextAnnotationsList()) {
          System.out.format("Text: %s%n", annotation.getDescription());
          System.out.format("Position : %s%n", annotation.getBoundingPoly());
        }
      }
    }
  }
}

Node.js

Sebelum mencoba contoh ini, ikuti petunjuk penyiapan Node.js di Panduan memulai Vision menggunakan library klien. Untuk mengetahui informasi selengkapnya, lihat dokumentasi referensi Vision Node.js API.

Untuk melakukan autentikasi ke Vision, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, lihat Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

const vision = require('@google-cloud/vision');

// Creates a client
const client = new vision.ImageAnnotatorClient();

/**
 * TODO(developer): Uncomment the following line before running the sample.
 */
// const fileName = 'Local image file, e.g. /path/to/image.png';

// Performs text detection on the local file
const [result] = await client.textDetection(fileName);
const detections = result.textAnnotations;
console.log('Text:');
detections.forEach(text => console.log(text));

Python

Sebelum mencoba contoh ini, ikuti petunjuk penyiapan Python di Panduan memulai Vision menggunakan library klien. Untuk mengetahui informasi selengkapnya, lihat dokumentasi referensi Vision Python API.

Untuk melakukan autentikasi ke Vision, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, lihat Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

def detect_text(path):
    """Detects text in the file."""
    from google.cloud import vision

    client = vision.ImageAnnotatorClient()

    with open(path, "rb") as image_file:
        content = image_file.read()

    image = vision.Image(content=content)

    response = client.text_detection(image=image)
    texts = response.text_annotations
    print("Texts:")

    for text in texts:
        print(f'\n"{text.description}"')

        vertices = [
            f"({vertex.x},{vertex.y})" for vertex in text.bounding_poly.vertices
        ]

        print("bounds: {}".format(",".join(vertices)))

    if response.error.message:
        raise Exception(
            "{}\nFor more info on error messages, check: "
            "https://cloud.google.com/apis/design/errors".format(response.error.message)
        )

Bahasa tambahan

C#: Ikuti Petunjuk penyiapan C# di halaman library klien, lalu kunjungi Dokumentasi referensi Vision untuk .NET.

PHP: Ikuti Petunjuk penyiapan PHP di halaman library klien, lalu buka Dokumentasi referensi Vision untuk PHP.

Ruby: Ikuti Petunjuk penyiapan Ruby di halaman library klien, lalu kunjungi Dokumentasi referensi Vision untuk Ruby.

Deteksi teks dalam gambar jarak jauh

Anda dapat menggunakan Vision API untuk melakukan deteksi fitur pada file gambar jarak jauh yang terletak di Cloud Storage atau di Web. Untuk mengirim permintaan file jarak jauh, tentukan URL Web atau Cloud Storage URI file dalam isi permintaan.

gcloud

Untuk melakukan deteksi teks, gunakan perintah gcloud ml vision detect-text seperti ditunjukkan dalam contoh berikut:

gcloud ml vision detect-text gs://cloud-samples-data/vision/ocr/sign.jpg

REST

Sebelum menggunakan salah satu data permintaan, buat penggantian berikut:

  • CLOUD_STORAGE_IMAGE_URI: jalur ke file gambar yang valid di bucket Cloud Storage. Anda setidaknya harus memiliki hak istimewa baca ke file tersebut. Contoh:
    • gs://cloud-samples-data/vision/ocr/sign.jpg
  • PROJECT_ID: ID project Google Cloud Anda.

Metode HTTP dan URL:

POST https://vision.googleapis.com/v1/images:annotate

Isi JSON permintaan:

{
  "requests": [
    {
      "image": {
        "source": {
          "imageUri": "CLOUD_STORAGE_IMAGE_URI"
        }
       },
       "features": [
         {
           "type": "TEXT_DETECTION"
         }
       ]
    }
  ]
}

Untuk mengirim permintaan Anda, pilih salah satu opsi berikut:

curl

Simpan isi permintaan dalam file bernama request.json, dan jalankan perintah berikut:

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "x-goog-user-project: PROJECT_ID" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://vision.googleapis.com/v1/images:annotate"

PowerShell

Simpan isi permintaan dalam file bernama request.json, dan jalankan perintah berikut:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred"; "x-goog-user-project" = "PROJECT_ID" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://vision.googleapis.com/v1/images:annotate" | Select-Object -Expand Content

Jika permintaan berhasil, server akan menampilkan kode status HTTP 200 OK dan respons dalam format JSON.

Respons TEXT_DETECTION berisi frasa yang terdeteksi, kotak pembatasnya, dan setiap kata serta kotak pembatasnya.

Go

Sebelum mencoba contoh ini, ikuti petunjuk penyiapan Go di Panduan memulai Vision menggunakan library klien. Untuk mengetahui informasi selengkapnya, lihat dokumentasi referensi Vision Go API.

Untuk melakukan autentikasi ke Vision, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, lihat Menyiapkan autentikasi untuk lingkungan pengembangan lokal.


// detectText gets text from the Vision API for an image at the given file path.
func detectTextURI(w io.Writer, file string) error {
	ctx := context.Background()

	client, err := vision.NewImageAnnotatorClient(ctx)
	if err != nil {
		return err
	}

	image := vision.NewImageFromURI(file)
	annotations, err := client.DetectTexts(ctx, image, nil, 10)
	if err != nil {
		return err
	}

	if len(annotations) == 0 {
		fmt.Fprintln(w, "No text found.")
	} else {
		fmt.Fprintln(w, "Text:")
		for _, annotation := range annotations {
			fmt.Fprintf(w, "%q\n", annotation.Description)
		}
	}

	return nil
}

Java

Sebelum mencoba contoh ini, ikuti petunjuk penyiapan Java di Panduan Memulai Vision API Menggunakan Library Klien. Untuk mengetahui informasi selengkapnya, lihat dokumentasi referensi Java Vision API.


import com.google.cloud.vision.v1.AnnotateImageRequest;
import com.google.cloud.vision.v1.AnnotateImageResponse;
import com.google.cloud.vision.v1.BatchAnnotateImagesResponse;
import com.google.cloud.vision.v1.EntityAnnotation;
import com.google.cloud.vision.v1.Feature;
import com.google.cloud.vision.v1.Image;
import com.google.cloud.vision.v1.ImageAnnotatorClient;
import com.google.cloud.vision.v1.ImageSource;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;

public class DetectTextGcs {

  public static void detectTextGcs() throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String filePath = "gs://your-gcs-bucket/path/to/image/file.jpg";
    detectTextGcs(filePath);
  }

  // Detects text in the specified remote image on Google Cloud Storage.
  public static void detectTextGcs(String gcsPath) throws IOException {
    List<AnnotateImageRequest> requests = new ArrayList<>();

    ImageSource imgSource = ImageSource.newBuilder().setGcsImageUri(gcsPath).build();
    Image img = Image.newBuilder().setSource(imgSource).build();
    Feature feat = Feature.newBuilder().setType(Feature.Type.TEXT_DETECTION).build();
    AnnotateImageRequest request =
        AnnotateImageRequest.newBuilder().addFeatures(feat).setImage(img).build();
    requests.add(request);

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (ImageAnnotatorClient client = ImageAnnotatorClient.create()) {
      BatchAnnotateImagesResponse response = client.batchAnnotateImages(requests);
      List<AnnotateImageResponse> responses = response.getResponsesList();

      for (AnnotateImageResponse res : responses) {
        if (res.hasError()) {
          System.out.format("Error: %s%n", res.getError().getMessage());
          return;
        }

        // For full list of available annotations, see http://g.co/cloud/vision/docs
        for (EntityAnnotation annotation : res.getTextAnnotationsList()) {
          System.out.format("Text: %s%n", annotation.getDescription());
          System.out.format("Position : %s%n", annotation.getBoundingPoly());
        }
      }
    }
  }
}

Node.js

Sebelum mencoba contoh ini, ikuti petunjuk penyiapan Node.js di Panduan memulai Vision menggunakan library klien. Untuk mengetahui informasi selengkapnya, lihat dokumentasi referensi Vision Node.js API.

Untuk melakukan autentikasi ke Vision, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, lihat Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

// Imports the Google Cloud client libraries
const vision = require('@google-cloud/vision');

// Creates a client
const client = new vision.ImageAnnotatorClient();

/**
 * TODO(developer): Uncomment the following lines before running the sample.
 */
// const bucketName = 'Bucket where the file resides, e.g. my-bucket';
// const fileName = 'Path to file within bucket, e.g. path/to/image.png';

// Performs text detection on the gcs file
const [result] = await client.textDetection(`gs://${bucketName}/${fileName}`);
const detections = result.textAnnotations;
console.log('Text:');
detections.forEach(text => console.log(text));

Python

Sebelum mencoba contoh ini, ikuti petunjuk penyiapan Python di Panduan memulai Vision menggunakan library klien. Untuk mengetahui informasi selengkapnya, lihat dokumentasi referensi Vision Python API.

Untuk melakukan autentikasi ke Vision, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, lihat Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

def detect_text_uri(uri):
    """Detects text in the file located in Google Cloud Storage or on the Web."""
    from google.cloud import vision

    client = vision.ImageAnnotatorClient()
    image = vision.Image()
    image.source.image_uri = uri

    response = client.text_detection(image=image)
    texts = response.text_annotations
    print("Texts:")

    for text in texts:
        print(f'\n"{text.description}"')

        vertices = [
            f"({vertex.x},{vertex.y})" for vertex in text.bounding_poly.vertices
        ]

        print("bounds: {}".format(",".join(vertices)))

    if response.error.message:
        raise Exception(
            "{}\nFor more info on error messages, check: "
            "https://cloud.google.com/apis/design/errors".format(response.error.message)
        )

Bahasa tambahan

C#: Ikuti Petunjuk penyiapan C# di halaman library klien, lalu kunjungi Dokumentasi referensi Vision untuk .NET.

PHP: Ikuti Petunjuk penyiapan PHP di halaman library klien, lalu buka Dokumentasi referensi Vision untuk PHP.

Ruby: Ikuti Petunjuk penyiapan Ruby di halaman library klien, lalu kunjungi Dokumentasi referensi Vision untuk Ruby.

Tentukan bahasa (opsional)

Kedua jenis permintaan OCR mendukung satu atau beberapa languageHints yang menentukan bahasa teks apa pun dalam gambar. Namun, nilai kosong biasanya memberikan hasil terbaik, karena menghapus nilai akan mengaktifkan deteksi bahasa otomatis. Untuk bahasa yang didasarkan pada alfabet Latin, penyetelan languageHints tidak diperlukan. Dalam kasus yang jarang terjadi, jika bahasa teks dalam gambar diketahui, setelan petunjuk akan membantu mendapatkan hasil yang lebih baik (meskipun dapat menjadi penghalang yang signifikan jika petunjuk salah). Deteksi teks akan menampilkan error jika satu atau beberapa bahasa yang ditentukan bukan salah satu bahasa yang didukung.

Jika Anda memilih untuk memberikan petunjuk bahasa, ubah isi permintaan Anda (file request.json) untuk memberikan string dari salah satu bahasa yang didukung di kolom imageContext.languageHints seperti yang ditunjukkan di contoh berikut:

{
  "requests": [
    {
      "image": {
        "source": {
          "imageUri": "IMAGE_URL"
        }
      },
      "features": [
        {
          "type": "DOCUMENT_TEXT_DETECTION"
        }
      ],
      "imageContext": {
        "languageHints": ["en-t-i0-handwrit"]
      }
    }
  ]
}

Dukungan multi-regional

Sekarang Anda dapat menentukan penyimpanan data tingkat benua dan pemrosesan OCR. Wilayah berikut saat ini didukung:

  • us: Khusus negara AS
  • eu: Uni Eropa

Lokasi

Cloud Vision menawarkan Anda beberapa kontrol terkait lokasi penyimpanan dan pemrosesan resource untuk project Anda. Secara khusus, Anda dapat mengonfigurasi Cloud Vision untuk menyimpan dan memproses data hanya di Uni Eropa.

Secara default, Cloud Vision menyimpan dan memproses resource di lokasi Global, yang berarti bahwa Cloud Vision tidak menjamin resource Anda akan tetap berada dalam lokasi atau region tertentu. Jika Anda memilih lokasi Uni Eropa, Google akan menyimpan data Anda dan memprosesnya hanya di Uni Eropa. Anda dan pengguna Anda dapat mengakses data dari lokasi mana pun.

Menetapkan lokasi menggunakan API

Vision API mendukung endpoint API global (vision.googleapis.com) dan juga dua endpoint berbasis region: endpoint Uni Eropa (eu-vision.googleapis.com) dan endpoint Amerika Serikat (us-vision.googleapis.com ). Gunakan endpoint ini untuk pemrosesan khusus per region. Misalnya, untuk menyimpan dan memproses data Anda hanya di Uni Eropa, gunakan URI eu-vision.googleapis.com sebagai pengganti vision.googleapis.com untuk panggilan REST API Anda:

  • https://eu-vision.googleapis.com/v1/projects/PROJECT_ID/locations/eu/images:annotate
  • https://eu-vision.googleapis.com/v1/projects/PROJECT_ID/locations/eu/images:asyncBatchAnnotate
  • https://eu-vision.googleapis.com/v1/projects/PROJECT_ID/locations/eu/files:annotate
  • https://eu-vision.googleapis.com/v1/projects/PROJECT_ID/locations/eu/files:asyncBatchAnnotate

Untuk menyimpan dan memproses data Anda hanya di Amerika Serikat, gunakan endpoint AS (us-vision.googleapis.com) dengan metode sebelumnya.

Menetapkan lokasi menggunakan library klien

Library klien Vision API mengakses endpoint API global (vision.googleapis.com) secara default. Untuk menyimpan dan memproses data hanya di Uni Eropa, Anda perlu menetapkan endpoint (eu-vision.googleapis.com) secara eksplisit. Contoh kode berikut menunjukkan cara mengonfigurasi setelan ini.

REST

Sebelum menggunakan salah satu data permintaan, lakukan penggantian berikut:

  • REGION_ID: Salah satu ID lokasi regional yang valid:
    • us: Khusus negara AS
    • eu: Uni Eropa
  • CLOUD_STORAGE_IMAGE_URI: jalur ke file gambar yang valid di bucket Cloud Storage. Anda setidaknya harus memiliki hak istimewa baca ke file tersebut. Contoh:
    • gs://cloud-samples-data/vision/ocr/sign.jpg
  • PROJECT_ID: ID project Google Cloud Anda.

Metode HTTP dan URL:

POST https://REGION_ID-vision.googleapis.com/v1/projects/PROJECT_ID/locations/REGION_ID/images:annotate

Isi JSON permintaan:

{
  "requests": [
    {
      "image": {
        "source": {
          "imageUri": "CLOUD_STORAGE_IMAGE_URI"
        }
       },
       "features": [
         {
           "type": "TEXT_DETECTION"
         }
       ]
    }
  ]
}

Untuk mengirim permintaan Anda, pilih salah satu opsi berikut:

curl

Simpan isi permintaan dalam file bernama request.json, dan jalankan perintah berikut:

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "x-goog-user-project: PROJECT_ID" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://REGION_ID-vision.googleapis.com/v1/projects/PROJECT_ID/locations/REGION_ID/images:annotate"

PowerShell

Simpan isi permintaan dalam file bernama request.json, dan jalankan perintah berikut:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred"; "x-goog-user-project" = "PROJECT_ID" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://REGION_ID-vision.googleapis.com/v1/projects/PROJECT_ID/locations/REGION_ID/images:annotate" | Select-Object -Expand Content

Jika permintaan berhasil, server akan menampilkan kode status HTTP 200 OK dan respons dalam format JSON.

Respons TEXT_DETECTION berisi frasa yang terdeteksi, kotak pembatasnya, dan setiap kata serta kotak pembatasnya.

Go

Sebelum mencoba contoh ini, ikuti petunjuk penyiapan Go di Panduan memulai Vision menggunakan library klien. Untuk mengetahui informasi selengkapnya, lihat dokumentasi referensi Vision Go API.

Untuk melakukan autentikasi ke Vision, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, lihat Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

import (
	"context"
	"fmt"

	vision "cloud.google.com/go/vision/apiv1"
	"google.golang.org/api/option"
)

// setEndpoint changes your endpoint.
func setEndpoint(endpoint string) error {
	// endpoint := "eu-vision.googleapis.com:443"

	ctx := context.Background()
	client, err := vision.NewImageAnnotatorClient(ctx, option.WithEndpoint(endpoint))
	if err != nil {
		return fmt.Errorf("NewImageAnnotatorClient: %w", err)
	}
	defer client.Close()

	return nil
}

Java

Sebelum mencoba contoh ini, ikuti petunjuk penyiapan Java di Panduan Memulai Vision API Menggunakan Library Klien. Untuk mengetahui informasi selengkapnya, lihat dokumentasi referensi Java Vision API.

ImageAnnotatorSettings settings =
    ImageAnnotatorSettings.newBuilder().setEndpoint("eu-vision.googleapis.com:443").build();

// Initialize client that will be used to send requests. This client only needs to be created
// once, and can be reused for multiple requests. After completing all of your requests, call
// the "close" method on the client to safely clean up any remaining background resources.
ImageAnnotatorClient client = ImageAnnotatorClient.create(settings);

Node.js

Sebelum mencoba contoh ini, ikuti petunjuk penyiapan Node.js di Panduan memulai Vision menggunakan library klien. Untuk mengetahui informasi selengkapnya, lihat dokumentasi referensi Vision Node.js API.

Untuk melakukan autentikasi ke Vision, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, lihat Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

// Imports the Google Cloud client library
const vision = require('@google-cloud/vision');

async function setEndpoint() {
  // Specifies the location of the api endpoint
  const clientOptions = {apiEndpoint: 'eu-vision.googleapis.com'};

  // Creates a client
  const client = new vision.ImageAnnotatorClient(clientOptions);

  // Performs text detection on the image file
  const [result] = await client.textDetection('./resources/wakeupcat.jpg');
  const labels = result.textAnnotations;
  console.log('Text:');
  labels.forEach(label => console.log(label.description));
}
setEndpoint();

Python

Sebelum mencoba contoh ini, ikuti petunjuk penyiapan Python di Panduan memulai Vision menggunakan library klien. Untuk mengetahui informasi selengkapnya, lihat dokumentasi referensi Vision Python API.

Untuk melakukan autentikasi ke Vision, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, lihat Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

from google.cloud import vision

client_options = {"api_endpoint": "eu-vision.googleapis.com"}

client = vision.ImageAnnotatorClient(client_options=client_options)

Cobalah

Coba deteksi teks dan deteksi teks dokumen di bawah ini. Anda dapat menggunakan gambar yang sudah ditetapkan (gs://cloud-samples-data/vision/ocr/sign.jpg) dengan mengklik Eksekusi, atau Anda dapat menentukan gambar Anda sendiri sebagai gantinya.

Untuk mencoba deteksi teks dokumen, perbarui nilai type menjadi DOCUMENT_TEXT_DETECTION.

Gambar rambu jalan

Isi permintaan:

{
  "requests": [
    {
      "features": [
        {
          "type": "TEXT_DETECTION"
        }
      ],
      "image": {
        "source": {
          "imageUri": "gs://cloud-samples-data/vision/ocr/sign.jpg"
        }
      }
    }
  ]
}