Detectar vários objetos

A API Vision pode detectar e extrair vários objetos de uma imagem com a localização de objetos.

A localização de objetos identifica vários itens em uma imagem e fornece um LocalizedObjectAnnotation para cada um deles. Cada LocalizedObjectAnnotation identifica informações sobre o objeto, a posição dele e limites retangulares para a região da imagem que o contém.

Ela também identifica objetos significativos e menos proeminentes em uma imagem.

A informação do objeto é retornada apenas em inglês. Com o Cloud Translation, é possível traduzir rótulos em inglês para vários outros idiomas.

imagem com caixas delimitadoras
Crédito da imagem: Bogdan Dada em Unsplash (anotações adicionadas) [links em inglês].

Por exemplo, a API retorna as seguintes informações e dados de local delimitadoras para os objetos na imagem anterior:

Nome mid Pontuação Limites
Roda de bicicleta /m/01bqk0 0.89648587 (0.32076266, 0.78941387), (0.43812272, 0.78941387), (0.43812272, 0.97331065), (0.32076266, 0.97331065)
Bicicleta /m/0199g 0.886761 (0.312, 0.6616471), (0.638353, 0.6616471), (0.638353, 0.9705882), (0.312, 0.9705882)
Roda de bicicleta /m/01bqk0 0.6345275 (0.5125398, 0.760708), (0.6256646, 0.760708), (0.6256646, 0.94601655), (0.5125398, 0.94601655)
Moldura /m/06z37_ 0.6207608 (0.79177403, 0.16160682), (0.97047985, 0.16160682), (0.97047985, 0.31348917), (0.79177403, 0.31348917)
Pneu /m/0h9mv 0.55886006 (0.32076266, 0.78941387), (0.43812272, 0.78941387), (0.43812272, 0.97331065), (0.32076266, 0.97331065)
Porta /m/02dgv 0.5160098 (0.77569866, 0.37104446), (0.9412425, 0.37104446), (0.9412425, 0.81507325), (0.77569866, 0.81507325)

No mid, há um identificador gerado por máquina (MID, na sigla em inglês), correspondente a uma entrada do Mapa de informações do Google. Para mais informações sobre como inspecionar valores mid, consulte a documentação da API de pesquisa do Mapa de informações do Google

Faça um teste

Se você começou a usar o Google Cloud agora, crie uma conta para avaliar o desempenho da API Cloud Vision em situações reais. Clientes novos também recebem US$ 300 em créditos para executar, testar e implantar cargas de trabalho.

Faça uma avaliação gratuita da API Cloud Vision

Solicitações de localização de objetos

Configurar o projeto e a autenticação do Google Cloud

  1. Sign in to your Google Cloud account. If you're new to Google Cloud, create an account to evaluate how our products perform in real-world scenarios. New customers also get $300 in free credits to run, test, and deploy workloads.
  2. In the Google Cloud console, on the project selector page, select or create a Google Cloud project.

    Go to project selector

  3. Make sure that billing is enabled for your Google Cloud project.

  4. Enable the Vision API.

    Enable the API

  5. Install the Google Cloud CLI.
  6. To initialize the gcloud CLI, run the following command:

    gcloud init

Detectar objetos em uma imagem local

Use a API Vision para detectar atributos em um arquivo de imagem local.

Para solicitações REST, envie o conteúdo do arquivo de imagem como uma string codificada em base64 no corpo da sua solicitação.

Para solicitações gcloud e da biblioteca de cliente, especifique o caminho para uma imagem local na sua solicitação.

Antes de usar os dados da solicitação abaixo, faça as substituições a seguir:

  • BASE64_ENCODED_IMAGE: a representação base64 (string ASCII) dos dados da imagem binária. Essa string precisa ser semelhante à seguinte:
    • /9j/4QAYRXhpZgAA...9tAVx/zDQDlGxn//2Q==
    Veja mais informações no tópico Codificação base64.
  • RESULTS_INT: (opcional) um valor inteiro de resultados a serem retornados. Se você omitir o campo "maxResults" e o valor dele, a API retornará o valor padrão de 10 resultados. Esse campo não se aplica aos seguintes tipos de recursos: TEXT_DETECTION, DOCUMENT_TEXT_DETECTION ou CROP_HINTS.
  • PROJECT_ID: o ID do Google Cloud projeto.

Método HTTP e URL:

POST https://vision.googleapis.com/v1/images:annotate

Corpo JSON da solicitação:

{
  "requests": [
    {
      "image": {
        "content": "BASE64_ENCODED_IMAGE"
      },
      "features": [
        {
          "maxResults": RESULTS_INT,
          "type": "OBJECT_LOCALIZATION"
        },
      ]
    }
  ]
}

Para enviar a solicitação, escolha uma destas opções:

Salve o corpo da solicitação em um arquivo com o nome request.json e execute o comando a seguir:

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "x-goog-user-project: PROJECT_ID" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://vision.googleapis.com/v1/images:annotate"

Salve o corpo da solicitação em um arquivo com o nome request.json e execute o comando a seguir:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred"; "x-goog-user-project" = "PROJECT_ID" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://vision.googleapis.com/v1/images:annotate" | Select-Object -Expand Content

Quando a solicitação é bem-sucedida, o servidor retorna um código de status HTTP 200 OK e a resposta no formato JSON.

Resposta:

{
  "responses": [
    {
      "localizedObjectAnnotations": [
        {
          "mid": "/m/01bqk0",
          "name": "Bicycle wheel",
          "score": 0.89648587,
          "boundingPoly": {
            "normalizedVertices": [
              {
                "x": 0.32076266,
                "y": 0.78941387
              },
              {
                "x": 0.43812272,
                "y": 0.78941387
              },
              {
                "x": 0.43812272,
                "y": 0.97331065
              },
              {
                "x": 0.32076266,
                "y": 0.97331065
              }
            ]
          }
        },
        {
          "mid": "/m/0199g",
          "name": "Bicycle",
          "score": 0.886761,
          "boundingPoly": {
            "normalizedVertices": [
              {
                "x": 0.312,
                "y": 0.6616471
              },
              {
                "x": 0.638353,
                "y": 0.6616471
              },
              {
                "x": 0.638353,
                "y": 0.9705882
              },
              {
                "x": 0.312,
                "y": 0.9705882
              }
            ]
          }
        },
        {
          "mid": "/m/01bqk0",
          "name": "Bicycle wheel",
          "score": 0.6345275,
          "boundingPoly": {
            "normalizedVertices": [
              {
                "x": 0.5125398,
                "y": 0.760708
              },
              {
                "x": 0.6256646,
                "y": 0.760708
              },
              {
                "x": 0.6256646,
                "y": 0.94601655
              },
              {
                "x": 0.5125398,
                "y": 0.94601655
              }
            ]
          }
        },
        {
          "mid": "/m/06z37_",
          "name": "Picture frame",
          "score": 0.6207608,
          "boundingPoly": {
            "normalizedVertices": [
              {
                "x": 0.79177403,
                "y": 0.16160682
              },
              {
                "x": 0.97047985,
                "y": 0.16160682
              },
              {
                "x": 0.97047985,
                "y": 0.31348917
              },
              {
                "x": 0.79177403,
                "y": 0.31348917
              }
            ]
          }
        },
        {
          "mid": "/m/0h9mv",
          "name": "Tire",
          "score": 0.55886006,
          "boundingPoly": {
            "normalizedVertices": [
              {
                "x": 0.32076266,
                "y": 0.78941387
              },
              {
                "x": 0.43812272,
                "y": 0.78941387
              },
              {
                "x": 0.43812272,
                "y": 0.97331065
              },
              {
                "x": 0.32076266,
                "y": 0.97331065
              }
            ]
          }
        },
        {
          "mid": "/m/02dgv",
          "name": "Door",
          "score": 0.5160098,
          "boundingPoly": {
            "normalizedVertices": [
              {
                "x": 0.77569866,
                "y": 0.37104446
              },
              {
                "x": 0.9412425,
                "y": 0.37104446
              },
              {
                "x": 0.9412425,
                "y": 0.81507325
              },
              {
                "x": 0.77569866,
                "y": 0.81507325
              }
            ]
          }
        }
      ]
    }
  ]
}

Antes de testar esta amostra, siga as instruções de configuração do Go no Guia de início rápido do Vision: como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API VisionGo.

Para autenticar no Vision, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.


// localizeObjects gets objects and bounding boxes from the Vision API for an image at the given file path.
func localizeObjects(w io.Writer, file string) error {
	ctx := context.Background()

	client, err := vision.NewImageAnnotatorClient(ctx)
	if err != nil {
		return err
	}

	f, err := os.Open(file)
	if err != nil {
		return err
	}
	defer f.Close()

	image, err := vision.NewImageFromReader(f)
	if err != nil {
		return err
	}
	annotations, err := client.LocalizeObjects(ctx, image, nil)
	if err != nil {
		return err
	}

	if len(annotations) == 0 {
		fmt.Fprintln(w, "No objects found.")
		return nil
	}

	fmt.Fprintln(w, "Objects:")
	for _, annotation := range annotations {
		fmt.Fprintln(w, annotation.Name)
		fmt.Fprintln(w, annotation.Score)

		for _, v := range annotation.BoundingPoly.NormalizedVertices {
			fmt.Fprintf(w, "(%f,%f)\n", v.X, v.Y)
		}
	}

	return nil
}

Antes de testar esta amostra, siga as instruções de configuração do Java no Guia de início rápido da API Vision: como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Vision para Java.

/**
 * Detects localized objects in the specified local image.
 *
 * @param filePath The path to the file to perform localized object detection on.
 * @throws Exception on errors while closing the client.
 * @throws IOException on Input/Output errors.
 */
public static void detectLocalizedObjects(String filePath) throws IOException {
  List<AnnotateImageRequest> requests = new ArrayList<>();

  ByteString imgBytes = ByteString.readFrom(new FileInputStream(filePath));

  Image img = Image.newBuilder().setContent(imgBytes).build();
  AnnotateImageRequest request =
      AnnotateImageRequest.newBuilder()
          .addFeatures(Feature.newBuilder().setType(Type.OBJECT_LOCALIZATION))
          .setImage(img)
          .build();
  requests.add(request);

  // Initialize client that will be used to send requests. This client only needs to be created
  // once, and can be reused for multiple requests. After completing all of your requests, call
  // the "close" method on the client to safely clean up any remaining background resources.
  try (ImageAnnotatorClient client = ImageAnnotatorClient.create()) {
    // Perform the request
    BatchAnnotateImagesResponse response = client.batchAnnotateImages(requests);
    List<AnnotateImageResponse> responses = response.getResponsesList();

    // Display the results
    for (AnnotateImageResponse res : responses) {
      for (LocalizedObjectAnnotation entity : res.getLocalizedObjectAnnotationsList()) {
        System.out.format("Object name: %s%n", entity.getName());
        System.out.format("Confidence: %s%n", entity.getScore());
        System.out.format("Normalized Vertices:%n");
        entity
            .getBoundingPoly()
            .getNormalizedVerticesList()
            .forEach(vertex -> System.out.format("- (%s, %s)%n", vertex.getX(), vertex.getY()));
      }
    }
  }
}

Antes de testar esta amostra, siga as instruções de configuração do Node.js no Guia de início rápido do Vision: como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API VisionNode.js.

Para autenticar no Vision, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.

// Imports the Google Cloud client libraries
const vision = require('@google-cloud/vision');
const fs = require('fs');

// Creates a client
const client = new vision.ImageAnnotatorClient();

/**
 * TODO(developer): Uncomment the following line before running the sample.
 */
// const fileName = `/path/to/localImage.png`;
const request = {
  image: {content: fs.readFileSync(fileName)},
};

const [result] = await client.objectLocalization(request);
const objects = result.localizedObjectAnnotations;
objects.forEach(object => {
  console.log(`Name: ${object.name}`);
  console.log(`Confidence: ${object.score}`);
  const vertices = object.boundingPoly.normalizedVertices;
  vertices.forEach(v => console.log(`x: ${v.x}, y:${v.y}`));
});

Antes de testar esta amostra, siga as instruções de configuração do Python no Guia de início rápido do Vision: como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API VisionPython.

Para autenticar no Vision, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.

def localize_objects(path):
    """Localize objects in the local image.

    Args:
    path: The path to the local file.
    """
    from google.cloud import vision

    client = vision.ImageAnnotatorClient()

    with open(path, "rb") as image_file:
        content = image_file.read()
    image = vision.Image(content=content)

    objects = client.object_localization(image=image).localized_object_annotations

    print(f"Number of objects found: {len(objects)}")
    for object_ in objects:
        print(f"\n{object_.name} (confidence: {object_.score})")
        print("Normalized bounding polygon vertices: ")
        for vertex in object_.bounding_poly.normalized_vertices:
            print(f" - ({vertex.x}, {vertex.y})")

C#: Siga as Instruções de configuração do C# na página das bibliotecas de cliente e acesse a Documentação de referência do Vision para .NET.

PHP: Siga as Instruções de configuração do PHP na página das bibliotecas de cliente e acesse a Documentação de referência do Vision para PHP.

Ruby Siga estas instruções:Instruções de configuração do Ruby na página das bibliotecas de cliente e, em seguida, visite oDocumentação de referência do Vision para Ruby.

Detectar objetos em uma imagem remota

É possível usar a API Vision para realizar a detecção de recursos em um arquivo de imagem remoto localizado no Cloud Storage ou na Web. Para enviar uma solicitação de arquivo remoto, especifique o URL da Web do arquivo ou o URI do Cloud Storage no corpo da solicitação.

Antes de usar os dados da solicitação abaixo, faça as substituições a seguir:

  • CLOUD_STORAGE_IMAGE_URI: o caminho para um arquivo de imagem válido em um bucket do Cloud Storage. Você precisa ter, pelo menos, privilégios de leitura para o arquivo. Exemplo:
    • https://cloud.google.com/vision/docs/images/bicycle_example.png
  • RESULTS_INT: (opcional) um valor inteiro de resultados a serem retornados. Se você omitir o campo "maxResults" e o valor dele, a API retornará o valor padrão de 10 resultados. Esse campo não se aplica aos seguintes tipos de recursos: TEXT_DETECTION, DOCUMENT_TEXT_DETECTION ou CROP_HINTS.
  • PROJECT_ID: o ID do Google Cloud projeto.

Método HTTP e URL:

POST https://vision.googleapis.com/v1/images:annotate

Corpo JSON da solicitação:

{
  "requests": [
    {
      "image": {
        "source": {
          "imageUri": "CLOUD_STORAGE_IMAGE_URI"
        }
      },
      "features": [
        {
          "maxResults": RESULTS_INT,
          "type": "OBJECT_LOCALIZATION"
        },
      ]
    }
  ]
}

Para enviar a solicitação, escolha uma destas opções:

Salve o corpo da solicitação em um arquivo com o nome request.json e execute o comando a seguir:

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "x-goog-user-project: PROJECT_ID" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://vision.googleapis.com/v1/images:annotate"

Salve o corpo da solicitação em um arquivo com o nome request.json e execute o comando a seguir:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred"; "x-goog-user-project" = "PROJECT_ID" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://vision.googleapis.com/v1/images:annotate" | Select-Object -Expand Content

Quando a solicitação é bem-sucedida, o servidor retorna um código de status HTTP 200 OK e a resposta no formato JSON.

Resposta:

{
  "responses": [
    {
      "localizedObjectAnnotations": [
        {
          "mid": "/m/01bqk0",
          "name": "Bicycle wheel",
          "score": 0.89648587,
          "boundingPoly": {
            "normalizedVertices": [
              {
                "x": 0.32076266,
                "y": 0.78941387
              },
              {
                "x": 0.43812272,
                "y": 0.78941387
              },
              {
                "x": 0.43812272,
                "y": 0.97331065
              },
              {
                "x": 0.32076266,
                "y": 0.97331065
              }
            ]
          }
        },
        {
          "mid": "/m/0199g",
          "name": "Bicycle",
          "score": 0.886761,
          "boundingPoly": {
            "normalizedVertices": [
              {
                "x": 0.312,
                "y": 0.6616471
              },
              {
                "x": 0.638353,
                "y": 0.6616471
              },
              {
                "x": 0.638353,
                "y": 0.9705882
              },
              {
                "x": 0.312,
                "y": 0.9705882
              }
            ]
          }
        },
        {
          "mid": "/m/01bqk0",
          "name": "Bicycle wheel",
          "score": 0.6345275,
          "boundingPoly": {
            "normalizedVertices": [
              {
                "x": 0.5125398,
                "y": 0.760708
              },
              {
                "x": 0.6256646,
                "y": 0.760708
              },
              {
                "x": 0.6256646,
                "y": 0.94601655
              },
              {
                "x": 0.5125398,
                "y": 0.94601655
              }
            ]
          }
        },
        {
          "mid": "/m/06z37_",
          "name": "Picture frame",
          "score": 0.6207608,
          "boundingPoly": {
            "normalizedVertices": [
              {
                "x": 0.79177403,
                "y": 0.16160682
              },
              {
                "x": 0.97047985,
                "y": 0.16160682
              },
              {
                "x": 0.97047985,
                "y": 0.31348917
              },
              {
                "x": 0.79177403,
                "y": 0.31348917
              }
            ]
          }
        },
        {
          "mid": "/m/0h9mv",
          "name": "Tire",
          "score": 0.55886006,
          "boundingPoly": {
            "normalizedVertices": [
              {
                "x": 0.32076266,
                "y": 0.78941387
              },
              {
                "x": 0.43812272,
                "y": 0.78941387
              },
              {
                "x": 0.43812272,
                "y": 0.97331065
              },
              {
                "x": 0.32076266,
                "y": 0.97331065
              }
            ]
          }
        },
        {
          "mid": "/m/02dgv",
          "name": "Door",
          "score": 0.5160098,
          "boundingPoly": {
            "normalizedVertices": [
              {
                "x": 0.77569866,
                "y": 0.37104446
              },
              {
                "x": 0.9412425,
                "y": 0.37104446
              },
              {
                "x": 0.9412425,
                "y": 0.81507325
              },
              {
                "x": 0.77569866,
                "y": 0.81507325
              }
            ]
          }
        }
      ]
    }
  ]
}

Antes de testar esta amostra, siga as instruções de configuração do Go no Guia de início rápido do Vision: como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API VisionGo.

Para autenticar no Vision, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.


// localizeObjects gets objects and bounding boxes from the Vision API for an image at the given file path.
func localizeObjectsURI(w io.Writer, file string) error {
	ctx := context.Background()

	client, err := vision.NewImageAnnotatorClient(ctx)
	if err != nil {
		return err
	}

	image := vision.NewImageFromURI(file)
	annotations, err := client.LocalizeObjects(ctx, image, nil)
	if err != nil {
		return err
	}

	if len(annotations) == 0 {
		fmt.Fprintln(w, "No objects found.")
		return nil
	}

	fmt.Fprintln(w, "Objects:")
	for _, annotation := range annotations {
		fmt.Fprintln(w, annotation.Name)
		fmt.Fprintln(w, annotation.Score)

		for _, v := range annotation.BoundingPoly.NormalizedVertices {
			fmt.Fprintf(w, "(%f,%f)\n", v.X, v.Y)
		}
	}

	return nil
}

Antes de testar esta amostra, siga as instruções de configuração do Java no Guia de início rápido da API Vision: como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Vision para Java.

/**
 * Detects localized objects in a remote image on Google Cloud Storage.
 *
 * @param gcsPath The path to the remote file on Google Cloud Storage to detect localized objects
 *     on.
 * @throws Exception on errors while closing the client.
 * @throws IOException on Input/Output errors.
 */
public static void detectLocalizedObjectsGcs(String gcsPath) throws IOException {
  List<AnnotateImageRequest> requests = new ArrayList<>();

  ImageSource imgSource = ImageSource.newBuilder().setGcsImageUri(gcsPath).build();
  Image img = Image.newBuilder().setSource(imgSource).build();

  AnnotateImageRequest request =
      AnnotateImageRequest.newBuilder()
          .addFeatures(Feature.newBuilder().setType(Type.OBJECT_LOCALIZATION))
          .setImage(img)
          .build();
  requests.add(request);

  // Initialize client that will be used to send requests. This client only needs to be created
  // once, and can be reused for multiple requests. After completing all of your requests, call
  // the "close" method on the client to safely clean up any remaining background resources.
  try (ImageAnnotatorClient client = ImageAnnotatorClient.create()) {
    // Perform the request
    BatchAnnotateImagesResponse response = client.batchAnnotateImages(requests);
    List<AnnotateImageResponse> responses = response.getResponsesList();
    client.close();
    // Display the results
    for (AnnotateImageResponse res : responses) {
      for (LocalizedObjectAnnotation entity : res.getLocalizedObjectAnnotationsList()) {
        System.out.format("Object name: %s%n", entity.getName());
        System.out.format("Confidence: %s%n", entity.getScore());
        System.out.format("Normalized Vertices:%n");
        entity
            .getBoundingPoly()
            .getNormalizedVerticesList()
            .forEach(vertex -> System.out.format("- (%s, %s)%n", vertex.getX(), vertex.getY()));
      }
    }
  }
}

Antes de testar esta amostra, siga as instruções de configuração do Node.js no Guia de início rápido do Vision: como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API VisionNode.js.

Para autenticar no Vision, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.

// Imports the Google Cloud client libraries
const vision = require('@google-cloud/vision');

// Creates a client
const client = new vision.ImageAnnotatorClient();

/**
 * TODO(developer): Uncomment the following line before running the sample.
 */
// const gcsUri = `gs://bucket/bucketImage.png`;

const [result] = await client.objectLocalization(gcsUri);
const objects = result.localizedObjectAnnotations;
objects.forEach(object => {
  console.log(`Name: ${object.name}`);
  console.log(`Confidence: ${object.score}`);
  const veritices = object.boundingPoly.normalizedVertices;
  veritices.forEach(v => console.log(`x: ${v.x}, y:${v.y}`));
});

Antes de testar esta amostra, siga as instruções de configuração do Python no Guia de início rápido do Vision: como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API VisionPython.

Para autenticar no Vision, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.

def localize_objects_uri(uri):
    """Localize objects in the image on Google Cloud Storage

    Args:
    uri: The path to the file in Google Cloud Storage (gs://...)
    """
    from google.cloud import vision

    client = vision.ImageAnnotatorClient()

    image = vision.Image()
    image.source.image_uri = uri

    objects = client.object_localization(image=image).localized_object_annotations

    print(f"Number of objects found: {len(objects)}")
    for object_ in objects:
        print(f"\n{object_.name} (confidence: {object_.score})")
        print("Normalized bounding polygon vertices: ")
        for vertex in object_.bounding_poly.normalized_vertices:
            print(f" - ({vertex.x}, {vertex.y})")

Para detectar rótulos em uma imagem, use o comando gcloud ml vision detect-objects, como mostrado no exemplo a seguir:

gcloud ml vision detect-objects https://cloud.google.com/vision/docs/images/bicycle_example.png

C#: Siga as Instruções de configuração do C# na página das bibliotecas de cliente e acesse a Documentação de referência do Vision para .NET.

PHP: Siga as Instruções de configuração do PHP na página das bibliotecas de cliente e acesse a Documentação de referência do Vision para PHP.

Ruby Siga estas instruções:Instruções de configuração do Ruby na página das bibliotecas de cliente e, em seguida, visite oDocumentação de referência do Vision para Ruby.

Testar

Tente detectar e localizar objetos com a ferramenta a seguir. É possível usar a imagem já especificada (https://cloud.google.com/vision/docs/images/bicycle_example.png) ou determinar sua própria imagem. Envie a solicitação selecionando Executar.

imagem sem caixas delimitadoras
Crédito da imagem: Bogdan Dada em Unsplash (links em inglês).

Corpo da solicitação:

{
  "requests": [
    {
      "features": [
        {
          "maxResults": 10,
          "type": "OBJECT_LOCALIZATION"
        }
      ],
      "image": {
        "source": {
          "imageUri": "https://cloud.google.com/vision/docs/images/bicycle_example.png"
        }
      }
    }
  ]
}