La detección de puntos de referencia detecta estructuras populares naturales y artificiales en una imagen.

Solicitudes de detección de puntos de referencia
Configura el proyecto de Google Cloud y la autenticación
Si no has creado un proyecto de Google Cloud, hazlo ahora. Expande esta sección para obtener instrucciones.
- Sign in to your Google Cloud account. If you're new to Google Cloud, create an account to evaluate how our products perform in real-world scenarios. New customers also get $300 in free credits to run, test, and deploy workloads.
-
In the Google Cloud console, on the project selector page, select or create a Google Cloud project.
-
Make sure that billing is enabled for your Google Cloud project.
-
Enable the Vision API.
- Install the Google Cloud CLI.
-
To initialize the gcloud CLI, run the following command:
gcloud init
Detecta puntos de referencia en una imagen local
Puedes usar la API de Vision para realizar la detección de características en un archivo de imagen local.
Para las solicitudes de REST, envía el contenido del archivo de imagen como una string codificada en base64 en el cuerpo de tu solicitud.
Para las solicitudes de biblioteca cliente y gcloud
, especifica la ruta a una imagen local en tu solicitud.
Antes de usar cualquiera de los datos de solicitud a continuación, realiza los siguientes reemplazos:
- BASE64_ENCODED_IMAGE: Es la representación en base64 (string ASCII) de los datos de la imagen binaria. Esta string debería ser similar a la siguiente:
/9j/4QAYRXhpZgAA...9tAVx/zDQDlGxn//2Q==
- RESULTS_INT: Un valor de número entero de resultados que se mostrarán (opcional). Si omites el campo
"maxResults"
y su valor, la API muestra el valor predeterminado de 10 resultados. Este campo no se aplica a los siguientes tipos de funciones:TEXT_DETECTION
,DOCUMENT_TEXT_DETECTION
oCROP_HINTS
. - PROJECT_ID: El Google Cloud ID de tu proyecto.
Método HTTP y URL:
POST https://vision.googleapis.com/v1/images:annotate
Cuerpo JSON de la solicitud:
{ "requests": [ { "image": { "content": "BASE64_ENCODED_IMAGE " }, "features": [ { "maxResults":RESULTS_INT , "type": "LANDMARK_DETECTION" }, ] } ] }
Para enviar tu solicitud, elige una de estas opciones:
Guarda el cuerpo de la solicitud en un archivo llamado request.json
y ejecuta el siguiente comando:
curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "x-goog-user-project:PROJECT_ID " \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://vision.googleapis.com/v1/images:annotate"
Guarda el cuerpo de la solicitud en un archivo llamado request.json
y ejecuta el siguiente comando:
$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred"; "x-goog-user-project" = "PROJECT_ID " }
Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://vision.googleapis.com/v1/images:annotate" | Select-Object -Expand Content
Si la solicitud se completa de forma correcta, el servidor muestra un código de estado HTTP 200 OK
y la respuesta en formato JSON.
Respuesta:
{ "responses": [ { "landmarkAnnotations": [ { "mid": "/m/014lft", "description": "Saint Basil's Cathedral", "score": 0.7840959, "boundingPoly": { "vertices": [ { "x": 812, "y": 1058 }, { "x": 2389, "y": 1058 }, { "x": 2389, "y": 3052 }, { "x": 812, "y": 3052 } ] }, "locations": [ { "latLng": { "latitude": 55.752912, "longitude": 37.622315883636475 } } ] } ] } ] }
Antes de probar este código de muestra, sigue las instrucciones de configuración para Go que se encuentran en la Guía de inicio rápido de Vision sobre cómo usar las bibliotecas cliente. Si quieres obtener más información, consulta la documentación de referencia de la API de Vision para Go.
Para autenticarte en Vision, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para un entorno de desarrollo local.
Antes de probar este código de muestra, sigue las instrucciones de configuración para Java que se encuentran la Guía de inicio rápido de la API de Vision sobre cómo usar las bibliotecas cliente. Si quieres obtener más información, consulta la documentación de referencia de la API de Vision para Java.
Antes de probar este código de muestra, sigue las instrucciones de configuración para Node.js que se encuentran en la Guía de inicio rápido de Vision sobre cómo usar las bibliotecas cliente. Si quieres obtener más información, consulta la documentación de referencia de la API de Vision para Node.js.
Para autenticarte en Vision, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para un entorno de desarrollo local.
Antes de probar este código de muestra, sigue las instrucciones de configuración para Python que se encuentran en la Guía de inicio rápido de Vision sobre cómo usar las bibliotecas cliente. Si quieres obtener más información, consulta la documentación de referencia de la API de Vision para Python.
Para autenticarte en Vision, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para un entorno de desarrollo local.
C#: sigue lasinstrucciones de configuración de C# en la página Bibliotecas cliente y, luego, visita la documentación de referencia de Vision para .NET.
PHP: sigue las instrucciones de configuración de PHP en la página Bibliotecas cliente y, luego, visita la documentación de referencia de Vision para PHP.
Ruby: sigue las instrucciones de configuración de Ruby en la página Bibliotecas cliente y, luego, visita la documentación de referencia de Vision para Ruby.
Detecta puntos de referencia en una imagen remota
Puedes usar la API de Vision para realizar funciones de detección de características en un archivo de imagen remoto ubicado en Cloud Storage o en la Web. Para enviar una solicitud de archivo remoto, especifica la URL web del archivo o el URI de Cloud Storage en el cuerpo de la solicitud.
Antes de usar cualquiera de los datos de solicitud a continuación, realiza los siguientes reemplazos:
- CLOUD_STORAGE_IMAGE_URI: La ruta a un archivo de imagen válido en un depósito de Cloud Storage. Como mínimo, debes tener privilegios de lectura en el archivo.
Ejemplo:
gs://cloud-samples-data/vision/landmark/st_basils.jpeg
- RESULTS_INT: Un valor de número entero de resultados que se mostrarán (opcional). Si omites el campo
"maxResults"
y su valor, la API muestra el valor predeterminado de 10 resultados. Este campo no se aplica a los siguientes tipos de funciones:TEXT_DETECTION
,DOCUMENT_TEXT_DETECTION
oCROP_HINTS
. - PROJECT_ID: El Google Cloud ID de tu proyecto.
Método HTTP y URL:
POST https://vision.googleapis.com/v1/images:annotate
Cuerpo JSON de la solicitud:
{ "requests": [ { "image": { "source": { "gcsImageUri": "CLOUD_STORAGE_IMAGE_URI " } }, "features": [ { "maxResults":RESULTS_INT , "type": "LANDMARK_DETECTION" }, ] } ] }
Para enviar tu solicitud, elige una de estas opciones:
Guarda el cuerpo de la solicitud en un archivo llamado request.json
y ejecuta el siguiente comando:
curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "x-goog-user-project:PROJECT_ID " \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://vision.googleapis.com/v1/images:annotate"
Guarda el cuerpo de la solicitud en un archivo llamado request.json
y ejecuta el siguiente comando:
$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred"; "x-goog-user-project" = "PROJECT_ID " }
Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://vision.googleapis.com/v1/images:annotate" | Select-Object -Expand Content
Si la solicitud se completa de forma correcta, el servidor muestra un código de estado HTTP 200 OK
y la respuesta en formato JSON.
Respuesta:
{ "responses": [ { "landmarkAnnotations": [ { "mid": "/m/014lft", "description": "Saint Basil's Cathedral", "score": 0.7840959, "boundingPoly": { "vertices": [ { "x": 812, "y": 1058 }, { "x": 2389, "y": 1058 }, { "x": 2389, "y": 3052 }, { "x": 812, "y": 3052 } ] }, "locations": [ { "latLng": { "latitude": 55.752912, "longitude": 37.622315883636475 } } ] } ] } ] }
Antes de probar este código de muestra, sigue las instrucciones de configuración para Go que se encuentran en la Guía de inicio rápido de Vision sobre cómo usar las bibliotecas cliente. Si quieres obtener más información, consulta la documentación de referencia de la API de Vision para Go.
Para autenticarte en Vision, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para un entorno de desarrollo local.
Antes de probar este código de muestra, sigue las instrucciones de configuración para Java que se encuentran en la Guía de inicio rápido de Vision sobre cómo usar las bibliotecas cliente. Si quieres obtener más información, consulta la documentación de referencia de la API de Vision para Java.
Para autenticarte en Vision, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para un entorno de desarrollo local.
Antes de probar este código de muestra, sigue las instrucciones de configuración para Node.js que se encuentran en la Guía de inicio rápido de Vision sobre cómo usar las bibliotecas cliente. Si quieres obtener más información, consulta la documentación de referencia de la API de Vision para Node.js.
Para autenticarte en Vision, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para un entorno de desarrollo local.
Antes de probar este código de muestra, sigue las instrucciones de configuración para Python que se encuentran en la Guía de inicio rápido de Vision sobre cómo usar las bibliotecas cliente. Si quieres obtener más información, consulta la documentación de referencia de la API de Vision para Python.
Para autenticarte en Vision, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para un entorno de desarrollo local.
Para realizar una detección de puntos de referencia, usa el comando gcloud ml vision detect-landmarks
como se muestra en el siguiente ejemplo:
gcloud ml vision detect-landmarksgs://cloud-samples-data/vision/landmark/st_basils.jpeg
C#: sigue lasinstrucciones de configuración de C# en la página Bibliotecas cliente y, luego, visita la documentación de referencia de Vision para .NET.
PHP: sigue las instrucciones de configuración de PHP en la página Bibliotecas cliente y, luego, visita la documentación de referencia de Vision para PHP.
Ruby: sigue las instrucciones de configuración de Ruby en la página Bibliotecas cliente y, luego, visita la documentación de referencia de Vision para Ruby.
Probar
Prueba la detección de puntos de referencia que se muestra a continuación. Puedes usar la imagen ya especificada (gs://cloud-samples-data/vision/landmark/st_basils.jpeg
) o especificar tu propia imagen en su lugar. Si deseas enviar la solicitud, selecciona Ejecutar.

Cuerpo de la solicitud:
{ "requests": [ { "features": [ { "maxResults": 10, "type": "LANDMARK_DETECTION" } ], "image": { "source": { "imageUri": "gs://cloud-samples-data/vision/landmark/st_basils.jpeg" } } } ] }