视频分类

视频分类可识别物体、位置、活动、动物品种、产品等。

使用 AutoML 视频

准备工作

如需了解创建 AutoML 模型的背景信息,请查看 Vertex AI 新手指南。对于 如何创建 AutoML 模型的说明, 请参见下面的视频数据: "开发和使用机器学习模型"。

使用您的 AutoML 模型

以下代码示例演示了如何使用 AutoML 模型,通过流式客户端库实现视频分类。

Java

如需向 Video Intelligence 进行身份验证,请设置应用默认凭据。 如需了解详情,请参阅为本地开发环境设置身份验证


import com.google.api.gax.rpc.BidiStream;
import com.google.cloud.videointelligence.v1p3beta1.LabelAnnotation;
import com.google.cloud.videointelligence.v1p3beta1.LabelFrame;
import com.google.cloud.videointelligence.v1p3beta1.StreamingAnnotateVideoRequest;
import com.google.cloud.videointelligence.v1p3beta1.StreamingAnnotateVideoResponse;
import com.google.cloud.videointelligence.v1p3beta1.StreamingAutomlClassificationConfig;
import com.google.cloud.videointelligence.v1p3beta1.StreamingFeature;
import com.google.cloud.videointelligence.v1p3beta1.StreamingVideoAnnotationResults;
import com.google.cloud.videointelligence.v1p3beta1.StreamingVideoConfig;
import com.google.cloud.videointelligence.v1p3beta1.StreamingVideoIntelligenceServiceClient;
import com.google.protobuf.ByteString;
import io.grpc.StatusRuntimeException;
import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.util.Arrays;
import java.util.concurrent.TimeoutException;

class StreamingAutoMlClassification {

  // Perform streaming video classification with an AutoML Model
  static void streamingAutoMlClassification(String filePath, String projectId, String modelId)
      throws TimeoutException, StatusRuntimeException, IOException {
    // String filePath = "path_to_your_video_file";
    // String projectId = "YOUR_GCP_PROJECT_ID";
    // String modelId = "YOUR_AUTO_ML_CLASSIFICATION_MODEL_ID";

    try (StreamingVideoIntelligenceServiceClient client =
        StreamingVideoIntelligenceServiceClient.create()) {

      Path path = Paths.get(filePath);
      byte[] data = Files.readAllBytes(path);
      // Set the chunk size to 5MB (recommended less than 10MB).
      int chunkSize = 5 * 1024 * 1024;
      int numChunks = (int) Math.ceil((double) data.length / chunkSize);

      String modelPath =
          String.format("projects/%s/locations/us-central1/models/%s", projectId, modelId);

      System.out.println(modelPath);

      StreamingAutomlClassificationConfig streamingAutomlClassificationConfig =
          StreamingAutomlClassificationConfig.newBuilder().setModelName(modelPath).build();

      StreamingVideoConfig streamingVideoConfig =
          StreamingVideoConfig.newBuilder()
              .setFeature(StreamingFeature.STREAMING_AUTOML_CLASSIFICATION)
              .setAutomlClassificationConfig(streamingAutomlClassificationConfig)
              .build();

      BidiStream<StreamingAnnotateVideoRequest, StreamingAnnotateVideoResponse> call =
          client.streamingAnnotateVideoCallable().call();

      // The first request must **only** contain the audio configuration:
      call.send(
          StreamingAnnotateVideoRequest.newBuilder().setVideoConfig(streamingVideoConfig).build());

      // Subsequent requests must **only** contain the audio data.
      // Send the requests in chunks
      for (int i = 0; i < numChunks; i++) {
        call.send(
            StreamingAnnotateVideoRequest.newBuilder()
                .setInputContent(
                    ByteString.copyFrom(
                        Arrays.copyOfRange(data, i * chunkSize, i * chunkSize + chunkSize)))
                .build());
      }

      // Tell the service you are done sending data
      call.closeSend();

      for (StreamingAnnotateVideoResponse response : call) {
        if (response.hasError()) {
          System.out.println(response.getError().getMessage());
          break;
        }

        StreamingVideoAnnotationResults annotationResults = response.getAnnotationResults();

        for (LabelAnnotation annotation : annotationResults.getLabelAnnotationsList()) {
          String entity = annotation.getEntity().getDescription();

          // There is only one frame per annotation
          LabelFrame labelFrame = annotation.getFrames(0);
          double offset =
              labelFrame.getTimeOffset().getSeconds() + labelFrame.getTimeOffset().getNanos() / 1e9;
          float confidence = labelFrame.getConfidence();

          System.out.format("At %fs segment: %s (%f)\n", offset, entity, confidence);
        }
      }
      System.out.println("Video streamed successfully.");
    }
  }
}

Node.js

如需向 Video Intelligence 进行身份验证,请设置应用默认凭据。 如需了解详情,请参阅为本地开发环境设置身份验证

/**
 * TODO(developer): Uncomment these variables before running the sample.
 */
// const path = 'Local file to analyze, e.g. ./my-file.mp4';
// const modelId = 'autoMl model'
// const projectId = 'Your GCP Project'

const {StreamingVideoIntelligenceServiceClient} =
  require('@google-cloud/video-intelligence').v1p3beta1;
const fs = require('fs');

// Instantiates a client
const client = new StreamingVideoIntelligenceServiceClient();

// Streaming configuration
const modelPath = `projects/${projectId}/locations/us-central1/models/${modelId}`;
const configRequest = {
  videoConfig: {
    feature: 'STREAMING_AUTOML_CLASSIFICATION',
    automlClassificationConfig: {
      modelName: modelPath,
    },
  },
};

const readStream = fs.createReadStream(path, {
  highWaterMark: 5 * 1024 * 1024, //chunk size set to 5MB (recommended less than 10MB)
  encoding: 'base64',
});
//Load file content
// Note: Input videos must have supported video codecs. See
// https://cloud.google.com/video-intelligence/docs/streaming/streaming#supported_video_codecs
// for more details.
const chunks = [];
readStream
  .on('data', chunk => {
    const request = {
      inputContent: chunk.toString(),
    };
    chunks.push(request);
  })
  .on('close', () => {
    // configRequest should be the first in the stream of requests
    stream.write(configRequest);
    for (let i = 0; i < chunks.length; i++) {
      stream.write(chunks[i]);
    }
    stream.end();
  });

const stream = client
  .streamingAnnotateVideo()
  .on('data', response => {
    //Gets annotations for video
    const annotations = response.annotationResults;
    const labels = annotations.labelAnnotations;
    labels.forEach(label => {
      console.log(
        `Label ${label.entity.description} occurs at: ${
          label.frames[0].timeOffset.seconds || 0
        }` + `.${(label.frames[0].timeOffset.nanos / 1e6).toFixed(0)}s`
      );
      console.log(` Confidence: ${label.frames[0].confidence}`);
    });
  })
  .on('error', response => {
    console.error(response);
  });

Python

如需向 Video Intelligence 进行身份验证,请设置应用默认凭据。 如需了解详情,请参阅为本地开发环境设置身份验证

import io

from google.cloud import videointelligence_v1p3beta1 as videointelligence

# path = 'path_to_file'
# project_id = 'gcp_project_id'
# model_id = 'automl_classification_model_id'

client = videointelligence.StreamingVideoIntelligenceServiceClient()

model_path = "projects/{}/locations/us-central1/models/{}".format(
    project_id, model_id
)

# Here we use classification as an example.
automl_config = videointelligence.StreamingAutomlClassificationConfig(
    model_name=model_path
)

video_config = videointelligence.StreamingVideoConfig(
    feature=videointelligence.StreamingFeature.STREAMING_AUTOML_CLASSIFICATION,
    automl_classification_config=automl_config,
)

# config_request should be the first in the stream of requests.
config_request = videointelligence.StreamingAnnotateVideoRequest(
    video_config=video_config
)

# Set the chunk size to 5MB (recommended less than 10MB).
chunk_size = 5 * 1024 * 1024

# Load file content.
# Note: Input videos must have supported video codecs. See
# https://cloud.google.com/video-intelligence/docs/streaming/streaming#supported_video_codecs
# for more details.
stream = []
with io.open(path, "rb") as video_file:
    while True:
        data = video_file.read(chunk_size)
        if not data:
            break
        stream.append(data)

def stream_generator():
    yield config_request
    for chunk in stream:
        yield videointelligence.StreamingAnnotateVideoRequest(input_content=chunk)

requests = stream_generator()

# streaming_annotate_video returns a generator.
# The default timeout is about 300 seconds.
# To process longer videos it should be set to
# larger than the length (in seconds) of the stream.
responses = client.streaming_annotate_video(requests, timeout=600)

for response in responses:
    # Check for errors.
    if response.error.message:
        print(response.error.message)
        break

    for label in response.annotation_results.label_annotations:
        for frame in label.frames:
            print(
                "At {:3d}s segment, {:5.1%} {}".format(
                    frame.time_offset.seconds,
                    frame.confidence,
                    label.entity.entity_id,
                )
            )