Mantenha tudo organizado com as coleções
Salve e categorize o conteúdo com base nas suas preferências.
O reconhecimento de ação identifica diferentes ações nos videoclipes, como
andar ou dançar. Cada uma das ações pode ou não ser realizada durante
todo o vídeo.
Como usar um modelo de AutoML
Antes de começar
Para saber mais sobre como criar um modelo do AutoML, confira o
Guia para iniciantes do Vertex AI. Para
instruções sobre como criar seu modelo do AutoML,
consulte Dados de vídeo em
"Desenvolver e usar modelos de ML" na documentação da Vertex AI.
Usar o modelo AutoML
O exemplo de código a seguir demonstra como usar seu modelo do AutoML para o reconhecimento de ação usando a biblioteca de cliente de streaming.
importiofromgoogle.cloudimportvideointelligence_v1p3beta1asvideointelligence# path = 'path_to_file'# project_id = 'project_id'# model_id = 'automl_action_recognition_model_id'client=videointelligence.StreamingVideoIntelligenceServiceClient()model_path="projects/{}/locations/us-central1/models/{}".format(project_id,model_id)automl_config=videointelligence.StreamingAutomlActionRecognitionConfig(model_name=model_path)video_config=videointelligence.StreamingVideoConfig(feature=videointelligence.StreamingFeature.STREAMING_AUTOML_ACTION_RECOGNITION,automl_action_recognition_config=automl_config,)# config_request should be the first in the stream of requests.config_request=videointelligence.StreamingAnnotateVideoRequest(video_config=video_config)# Set the chunk size to 5MB (recommended less than 10MB).chunk_size=5*1024*1024defstream_generator():yieldconfig_request# Load file content.# Note: Input videos must have supported video codecs. See# https://cloud.google.com/video-intelligence/docs/streaming/streaming#supported_video_codecs# for more details.withio.open(path,"rb")asvideo_file:whileTrue:data=video_file.read(chunk_size)ifnotdata:breakyieldvideointelligence.StreamingAnnotateVideoRequest(input_content=data)requests=stream_generator()# streaming_annotate_video returns a generator.# The default timeout is about 300 seconds.# To process longer videos it should be set to# larger than the length (in seconds) of the video.responses=client.streaming_annotate_video(requests,timeout=900)# Each response corresponds to about 1 second of video.forresponseinresponses:# Check for errors.ifresponse.error.message:print(response.error.message)breakforlabelinresponse.annotation_results.label_annotations:forframeinlabel.frames:print("At {:3d}s segment, {:5.1%}{}".format(frame.time_offset.seconds,frame.confidence,label.entity.entity_id,))
[[["Fácil de entender","easyToUnderstand","thumb-up"],["Meu problema foi resolvido","solvedMyProblem","thumb-up"],["Outro","otherUp","thumb-up"]],[["Difícil de entender","hardToUnderstand","thumb-down"],["Informações incorretas ou exemplo de código","incorrectInformationOrSampleCode","thumb-down"],["Não contém as informações/amostras de que eu preciso","missingTheInformationSamplesINeed","thumb-down"],["Problema na tradução","translationIssue","thumb-down"],["Outro","otherDown","thumb-down"]],["Última atualização 2025-02-26 UTC."],[],[]]