Pengenalan tindakan

Pengenalan tindakan mengidentifikasi berbagai tindakan dari klip video, seperti berjalan atau menari. Setiap tindakan mungkin dilakukan atau tidak dilakukan di sepanjang durasi video.

Menggunakan model AutoML

Sebelum memulai

Untuk latar belakang tentang cara membuat model AutoML, lihat Panduan pemula Vertex AI. Untuk mengetahui petunjuk cara membuat model AutoML, baca Data video dalam bagian "Mengembangkan dan menggunakan model ML" dalam dokumentasi Vertex AI.

Gunakan model AutoML Anda

Contoh kode berikut menunjukkan cara menggunakan model AutoML untuk pengenalan tindakan menggunakan library klien streaming.

Python

Untuk mengautentikasi Video Intelligence, siapkan Kredensial Default Aplikasi. Untuk informasi selengkapnya, lihat Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

import io

from google.cloud import videointelligence_v1p3beta1 as videointelligence

# path = 'path_to_file'
# project_id = 'project_id'
# model_id = 'automl_action_recognition_model_id'

client = videointelligence.StreamingVideoIntelligenceServiceClient()

model_path = "projects/{}/locations/us-central1/models/{}".format(
    project_id, model_id
)

automl_config = videointelligence.StreamingAutomlActionRecognitionConfig(
    model_name=model_path
)

video_config = videointelligence.StreamingVideoConfig(
    feature=videointelligence.StreamingFeature.STREAMING_AUTOML_ACTION_RECOGNITION,
    automl_action_recognition_config=automl_config,
)

# config_request should be the first in the stream of requests.
config_request = videointelligence.StreamingAnnotateVideoRequest(
    video_config=video_config
)

# Set the chunk size to 5MB (recommended less than 10MB).
chunk_size = 5 * 1024 * 1024

def stream_generator():
    yield config_request
    # Load file content.
    # Note: Input videos must have supported video codecs. See
    # https://cloud.google.com/video-intelligence/docs/streaming/streaming#supported_video_codecs
    # for more details.
    with io.open(path, "rb") as video_file:
        while True:
            data = video_file.read(chunk_size)
            if not data:
                break
            yield videointelligence.StreamingAnnotateVideoRequest(
                input_content=data
            )

requests = stream_generator()

# streaming_annotate_video returns a generator.
# The default timeout is about 300 seconds.
# To process longer videos it should be set to
# larger than the length (in seconds) of the video.
responses = client.streaming_annotate_video(requests, timeout=900)

# Each response corresponds to about 1 second of video.
for response in responses:
    # Check for errors.
    if response.error.message:
        print(response.error.message)
        break

    for label in response.annotation_results.label_annotations:
        for frame in label.frames:
            print(
                "At {:3d}s segment, {:5.1%} {}".format(
                    frame.time_offset.seconds,
                    frame.confidence,
                    label.entity.entity_id,
                )
            )