Annoter une vidéo à l'aide de bibliothèques clientes

Ce guide de démarrage rapide présente l'API Video Intelligence. Dans ce guide de démarrage rapide, vous allez configurer votre projet Google Cloud et obtenir les autorisations requises. Vous demanderez ensuite à Video Intelligence d'annoter une vidéo.

Avant de commencer

  1. Connectez-vous à votre compte Google Cloud. Si vous débutez sur Google Cloud, créez un compte pour évaluer les performances de nos produits en conditions réelles. Les nouveaux clients bénéficient également de 300 $ de crédits gratuits pour exécuter, tester et déployer des charges de travail.
  2. In the Google Cloud console, on the project selector page, select or create a Google Cloud project.

    Go to project selector

  3. Make sure that billing is enabled for your Google Cloud project.

  4. Enable the Cloud Video Intelligence API.

    Enable the API

  5. Install the Google Cloud CLI.
  6. To initialize the gcloud CLI, run the following command:

    gcloud init
  7. In the Google Cloud console, on the project selector page, select or create a Google Cloud project.

    Go to project selector

  8. Make sure that billing is enabled for your Google Cloud project.

  9. Enable the Cloud Video Intelligence API.

    Enable the API

  10. Install the Google Cloud CLI.
  11. To initialize the gcloud CLI, run the following command:

    gcloud init

Installer la bibliothèque cliente

Go

go get cloud.google.com/go/videointelligence/apiv1

Java

Node.js

Avant d'installer la bibliothèque, assurez-vous d'avoir préparé votre environnement pour le développement Node.js.

npm install --save @google-cloud/video-intelligence

Python

Avant d'installer la bibliothèque, assurez-vous d'avoir préparé votre environnement pour le développement Python.

pip install --upgrade google-cloud-videointelligence

Langues supplémentaires

C#: Veuillez suivre les Instructions de configuration de C# sur la page des bibliothèques clientes puis accédez à la page Documentation de référence de Video Intelligence pour .NET

PHP : Veuillez suivre les instructions de configuration pour PHP sur la page des bibliothèques clientes, puis consultez la documentation de référence sur Video Intelligence pour PHP.

Ruby: Veuillez suivre les Instructions de configuration de Ruby sur la page des bibliothèques clientes puis accédez à la page Documentation de référence de Video Intelligence pour Ruby

Configurer l'authentification

  1. Install the Google Cloud CLI, then initialize it by running the following command:

    gcloud init
  2. Create local authentication credentials for your user account:

    gcloud auth application-default login

    Un écran de connexion s'affiche. Une fois que vous êtes connecté, vos identifiants sont stockés dans le fichier d'identifiants local utilisé par ADC.

Détection de thèmes

Vous pouvez à présent utiliser l'API Video Intelligence pour demander des informations sur une vidéo ou sur un des segments d'une vidéo, comme la détection de thèmes. Exécutez le code suivant pour effectuer votre première requête de détection de thèmes sur une vidéo :

Go


// Sample video_quickstart uses the Google Cloud Video Intelligence API to label a video.
package main

import (
	"context"
	"fmt"
	"log"

	"github.com/golang/protobuf/ptypes"

	video "cloud.google.com/go/videointelligence/apiv1"
	videopb "cloud.google.com/go/videointelligence/apiv1/videointelligencepb"
)

func main() {
	ctx := context.Background()

	// Creates a client.
	client, err := video.NewClient(ctx)
	if err != nil {
		log.Fatalf("Failed to create client: %v", err)
	}
	defer client.Close()

	op, err := client.AnnotateVideo(ctx, &videopb.AnnotateVideoRequest{
		InputUri: "gs://cloud-samples-data/video/cat.mp4",
		Features: []videopb.Feature{
			videopb.Feature_LABEL_DETECTION,
		},
	})
	if err != nil {
		log.Fatalf("Failed to start annotation job: %v", err)
	}

	resp, err := op.Wait(ctx)
	if err != nil {
		log.Fatalf("Failed to annotate: %v", err)
	}

	// Only one video was processed, so get the first result.
	result := resp.GetAnnotationResults()[0]

	for _, annotation := range result.SegmentLabelAnnotations {
		fmt.Printf("Description: %s\n", annotation.Entity.Description)

		for _, category := range annotation.CategoryEntities {
			fmt.Printf("\tCategory: %s\n", category.Description)
		}

		for _, segment := range annotation.Segments {
			start, _ := ptypes.Duration(segment.Segment.StartTimeOffset)
			end, _ := ptypes.Duration(segment.Segment.EndTimeOffset)
			fmt.Printf("\tSegment: %s to %s\n", start, end)
			fmt.Printf("\tConfidence: %v\n", segment.Confidence)
		}
	}
}

Java


import com.google.api.gax.longrunning.OperationFuture;
import com.google.cloud.videointelligence.v1.AnnotateVideoProgress;
import com.google.cloud.videointelligence.v1.AnnotateVideoRequest;
import com.google.cloud.videointelligence.v1.AnnotateVideoResponse;
import com.google.cloud.videointelligence.v1.Entity;
import com.google.cloud.videointelligence.v1.Feature;
import com.google.cloud.videointelligence.v1.LabelAnnotation;
import com.google.cloud.videointelligence.v1.LabelSegment;
import com.google.cloud.videointelligence.v1.VideoAnnotationResults;
import com.google.cloud.videointelligence.v1.VideoIntelligenceServiceClient;
import java.util.List;

public class QuickstartSample {

  /** Demonstrates using the video intelligence client to detect labels in a video file. */
  public static void main(String[] args) throws Exception {
    // Instantiate a video intelligence client
    try (VideoIntelligenceServiceClient client = VideoIntelligenceServiceClient.create()) {
      // The Google Cloud Storage path to the video to annotate.
      String gcsUri = "gs://cloud-samples-data/video/cat.mp4";

      // Create an operation that will contain the response when the operation completes.
      AnnotateVideoRequest request =
          AnnotateVideoRequest.newBuilder()
              .setInputUri(gcsUri)
              .addFeatures(Feature.LABEL_DETECTION)
              .build();

      OperationFuture<AnnotateVideoResponse, AnnotateVideoProgress> response =
          client.annotateVideoAsync(request);

      System.out.println("Waiting for operation to complete...");

      List<VideoAnnotationResults> results = response.get().getAnnotationResultsList();
      if (results.isEmpty()) {
        System.out.println("No labels detected in " + gcsUri);
        return;
      }
      for (VideoAnnotationResults result : results) {
        System.out.println("Labels:");
        // get video segment label annotations
        for (LabelAnnotation annotation : result.getSegmentLabelAnnotationsList()) {
          System.out.println(
              "Video label description : " + annotation.getEntity().getDescription());
          // categories
          for (Entity categoryEntity : annotation.getCategoryEntitiesList()) {
            System.out.println("Label Category description : " + categoryEntity.getDescription());
          }
          // segments
          for (LabelSegment segment : annotation.getSegmentsList()) {
            double startTime =
                segment.getSegment().getStartTimeOffset().getSeconds()
                    + segment.getSegment().getStartTimeOffset().getNanos() / 1e9;
            double endTime =
                segment.getSegment().getEndTimeOffset().getSeconds()
                    + segment.getSegment().getEndTimeOffset().getNanos() / 1e9;
            System.out.printf("Segment location : %.3f:%.3f\n", startTime, endTime);
            System.out.println("Confidence : " + segment.getConfidence());
          }
        }
      }
    }
  }
}

Node.js

Avant d'exécuter l'exemple, assurez-vous d'avoir préparé l'environnement pour le développement Node.js.

// Imports the Google Cloud Video Intelligence library
const videoIntelligence = require('@google-cloud/video-intelligence');

// Creates a client
const client = new videoIntelligence.VideoIntelligenceServiceClient();

// The GCS uri of the video to analyze
const gcsUri = 'gs://cloud-samples-data/video/cat.mp4';

// Construct request
const request = {
  inputUri: gcsUri,
  features: ['LABEL_DETECTION'],
};

// Execute request
const [operation] = await client.annotateVideo(request);

console.log(
  'Waiting for operation to complete... (this may take a few minutes)'
);

const [operationResult] = await operation.promise();

// Gets annotations for video
const annotations = operationResult.annotationResults[0];

// Gets labels for video from its annotations
const labels = annotations.segmentLabelAnnotations;
labels.forEach(label => {
  console.log(`Label ${label.entity.description} occurs at:`);
  label.segments.forEach(segment => {
    segment = segment.segment;
    console.log(
      `\tStart: ${segment.startTimeOffset.seconds}` +
        `.${(segment.startTimeOffset.nanos / 1e6).toFixed(0)}s`
    );
    console.log(
      `\tEnd: ${segment.endTimeOffset.seconds}.` +
        `${(segment.endTimeOffset.nanos / 1e6).toFixed(0)}s`
    );
  });
});

Python

Avant d'exécuter l'exemple, assurez-vous d'avoir préparé l'environnement pour le développement Python.

from google.cloud import videointelligence

video_client = videointelligence.VideoIntelligenceServiceClient()
features = [videointelligence.Feature.LABEL_DETECTION]
operation = video_client.annotate_video(
    request={
        "features": features,
        "input_uri": "gs://cloud-samples-data/video/cat.mp4",
    }
)
print("\nProcessing video for label annotations:")

result = operation.result(timeout=180)
print("\nFinished processing.")

# first result is retrieved because a single video was processed
segment_labels = result.annotation_results[0].segment_label_annotations
for i, segment_label in enumerate(segment_labels):
    print("Video label description: {}".format(segment_label.entity.description))
    for category_entity in segment_label.category_entities:
        print(
            "\tLabel category description: {}".format(category_entity.description)
        )

    for i, segment in enumerate(segment_label.segments):
        start_time = (
            segment.segment.start_time_offset.seconds
            + segment.segment.start_time_offset.microseconds / 1e6
        )
        end_time = (
            segment.segment.end_time_offset.seconds
            + segment.segment.end_time_offset.microseconds / 1e6
        )
        positions = "{}s to {}s".format(start_time, end_time)
        confidence = segment.confidence
        print("\tSegment {}: {}".format(i, positions))
        print("\tConfidence: {}".format(confidence))
    print("\n")

Langues supplémentaires

C# : Veuillez suivre les instructions de configuration de C# sur la page des bibliothèques clientes, puis consultez la documentation de référence sur Video Intelligence pour .NET.

PHP: Veuillez suivre les Instructions de configuration de PHP sur la page des bibliothèques clientes puis accédez à la page Documentation de référence de Video Intelligence pour PHP

Ruby: Veuillez suivre les Instructions de configuration de Ruby sur la page des bibliothèques clientes puis accédez à la page Documentation de référence de Video Intelligence pour Ruby

Félicitations ! Vous avez envoyé votre première requête à l'API Video Intelligence.

Comment ça s'est passé ?

Effectuer un nettoyage

Pour éviter que les ressources utilisées sur cette page soient facturées sur votre compte Google Cloud, procédez comme suit :

Étape suivante