Mendeteksi konten vulgar di video

Deteksi Konten Vulgar mendeteksi konten khusus dewasa di video. Konten khusus dewasa umumnya tidak sesuai untuk anak di bawah usia 18 tahun dan termasuk, tetapi tidak terbatas pada, ketelanjangan, aktivitas seksual, dan pornografi. Konten semacam itu yang terdeteksi dalam kartun atau anime juga diidentifikasi.

Respons ini mencakup nilai kemungkinan dalam kelompok, dari VERY_UNLIKELY hingga VERY_LIKELY.

Saat mengevaluasi video, Deteksi Konten Eksplisit akan melakukannya berdasarkan per frame dan mempertimbangkan hanya konten visual. Komponen audio video tidak digunakan untuk mengevaluasi level konten vulgar.

Berikut contoh pelaksanaan analisis video untuk fitur Deteksi Konten Vulgar pada file yang berada di Cloud Storage.

REST

Kirim permintaan anotasi video

Berikut ini cara mengirim permintaan POST ke metode videos:annotate. Contoh tersebut menggunakan Google Cloud CLI untuk membuat token akses. Untuk mengetahui petunjuk cara menginstal gcloud CLI, baca Panduan Memulai Video Intelligence API.

Sebelum menggunakan salah satu data permintaan, lakukan penggantian berikut:

  • INPUT_URI: bucket Cloud Storage yang berisi file yang ingin Anda beri anotasi, termasuk nama file-nya. Harus diawali dengan gs://.
    Contoh: "inputUri": "gs://cloud-videointelligence-demo/assistant.mp4",
  • PROJECT_NUMBER: ID numerik untuk project Google Cloud Anda

Metode HTTP dan URL:

POST https://videointelligence.googleapis.com/v1/videos:annotate

Meminta isi JSON:

{
  "inputUri": "INPUT_URI",
  "features": ["EXPLICIT_CONTENT_DETECTION"]
}

Untuk mengirim permintaan Anda, perluas salah satu opsi berikut:

Anda akan melihat respons JSON seperti berikut:

{
  "name": "projects/PROJECT_NUMBER/locations/LOCATION_ID/operations/OPERATION_ID"
}

Jika respons berhasil, Video Intelligence API akan menampilkan name untuk operasi Anda. Di atas menunjukkan contoh respons tersebut, dengan:

  • PROJECT_NUMBER: jumlah project Anda.
  • LOCATION_ID: region Cloud tempat anotasi seharusnya dilakukan. Region cloud yang didukung adalah: us-east1, us-west1, europe-west1, asia-east1. Jika tidak ada wilayah yang ditentukan, wilayah akan ditentukan berdasarkan lokasi file video.
  • OPERATION_ID: ID operasi yang berjalan lama yang dibuat untuk permintaan dan diberikan dalam respons saat Anda memulai operasi, misalnya 12345...

Mendapatkan hasil anotasi

Untuk mengambil hasil operasi, buat permintaan GET, menggunakan nama operasi yang ditampilkan dari panggilan ke videos:annotate, seperti yang ditunjukkan dalam contoh berikut.

Sebelum menggunakan salah satu data permintaan, lakukan penggantian berikut:

  • OPERATION_NAME: nama operasi seperti yang ditampilkan oleh Video Intelligence API. Nama operasi memiliki format projects/PROJECT_NUMBER/locations/LOCATION_ID/operations/OPERATION_ID
  • PROJECT_NUMBER: ID numerik untuk project Google Cloud Anda

Metode HTTP dan URL:

GET https://videointelligence.googleapis.com/v1/OPERATION_NAME

Untuk mengirim permintaan, perluas salah satu opsi berikut:

Anda akan melihat respons JSON seperti berikut:

{
  "name": "projects/PROJECT_NUMBER/locations/LOCATION_ID/operations/OPERATION_ID",
  "metadata": {
    "@type": "type.googleapis.com/google.cloud.videointelligence.v1.AnnotateVideoProgress",
    "annotationProgress": [
     {
      "inputUri": "/demomaker/gbikes_dinosaur.mp4",
      "progressPercent": 100,
      "startTime": "2020-03-26T00:16:35.112404Z",
      "updateTime": "2020-03-26T00:16:55.937889Z"
     }
    ]
   },
   "done": true,
   "response": {
    "@type": "type.googleapis.com/google.cloud.videointelligence.v1.AnnotateVideoResponse",
    "annotationResults": [
     {
      "inputUri": "/demomaker/gbikes_dinosaur.mp4",
      "explicitAnnotation": {
       "frames": [
        {
         "timeOffset": "0.056149s",
         "pornographyLikelihood": "VERY_UNLIKELY"
        },
        {
         "timeOffset": "1.166841s",
         "pornographyLikelihood": "VERY_UNLIKELY"
        },
            ...
        {
         "timeOffset": "41.678209s",
         "pornographyLikelihood": "VERY_UNLIKELY"
        },
        {
         "timeOffset": "42.596413s",
         "pornographyLikelihood": "VERY_UNLIKELY"
        }
       ]
      }
     }
    ]
   }
  }
Anotasi deteksi bidikan ditampilkan sebagai daftar shotAnnotations. Catatan: Kolom done hanya ditampilkan jika nilainya True. Ini tidak termasuk dalam respons dengan operasi yang belum selesai.

Download hasil anotasi

Salin anotasi dari sumber ke bucket tujuan: (lihat Menyalin file dan objek)

gsutil cp gcs_uri gs://my-bucket

Catatan: Jika output gcs uri disediakan oleh pengguna, anotasi akan disimpan dalam uri gcs tersebut.

Go


func explicitContentURI(w io.Writer, file string) error {
	ctx := context.Background()
	client, err := video.NewClient(ctx)
	if err != nil {
		return err
	}
	defer client.Close()

	op, err := client.AnnotateVideo(ctx, &videopb.AnnotateVideoRequest{
		Features: []videopb.Feature{
			videopb.Feature_EXPLICIT_CONTENT_DETECTION,
		},
		InputUri: file,
	})
	if err != nil {
		return err
	}
	resp, err := op.Wait(ctx)
	if err != nil {
		return err
	}

	// A single video was processed. Get the first result.
	result := resp.AnnotationResults[0].ExplicitAnnotation

	for _, frame := range result.Frames {
		offset, _ := ptypes.Duration(frame.TimeOffset)
		fmt.Fprintf(w, "%s - %s\n", offset, frame.PornographyLikelihood.String())
	}

	return nil
}

Java

Untuk mengautentikasi ke Video Intelligence, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, baca Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

// Instantiate a com.google.cloud.videointelligence.v1.VideoIntelligenceServiceClient
try (VideoIntelligenceServiceClient client = VideoIntelligenceServiceClient.create()) {
  // Create an operation that will contain the response when the operation completes.
  AnnotateVideoRequest request =
      AnnotateVideoRequest.newBuilder()
          .setInputUri(gcsUri)
          .addFeatures(Feature.EXPLICIT_CONTENT_DETECTION)
          .build();

  OperationFuture<AnnotateVideoResponse, AnnotateVideoProgress> response =
      client.annotateVideoAsync(request);

  System.out.println("Waiting for operation to complete...");
  // Print detected annotations and their positions in the analyzed video.
  for (VideoAnnotationResults result : response.get().getAnnotationResultsList()) {
    for (ExplicitContentFrame frame : result.getExplicitAnnotation().getFramesList()) {
      double frameTime =
          frame.getTimeOffset().getSeconds() + frame.getTimeOffset().getNanos() / 1e9;
      System.out.printf("Location: %.3fs\n", frameTime);
      System.out.println("Adult: " + frame.getPornographyLikelihood());
    }
  }

Node.js

Untuk mengautentikasi ke Video Intelligence, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, baca Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

// Imports the Google Cloud Video Intelligence library
const video = require('@google-cloud/video-intelligence').v1;

// Creates a client
const client = new video.VideoIntelligenceServiceClient();

/**
 * TODO(developer): Uncomment the following line before running the sample.
 */
// const gcsUri = 'GCS URI of video to analyze, e.g. gs://my-bucket/my-video.mp4';

const request = {
  inputUri: gcsUri,
  features: ['EXPLICIT_CONTENT_DETECTION'],
};

// Human-readable likelihoods
const likelihoods = [
  'UNKNOWN',
  'VERY_UNLIKELY',
  'UNLIKELY',
  'POSSIBLE',
  'LIKELY',
  'VERY_LIKELY',
];

// Detects unsafe content
const [operation] = await client.annotateVideo(request);
console.log('Waiting for operation to complete...');
const [operationResult] = await operation.promise();
// Gets unsafe content
const explicitContentResults =
  operationResult.annotationResults[0].explicitAnnotation;
console.log('Explicit annotation results:');
explicitContentResults.frames.forEach(result => {
  if (result.timeOffset === undefined) {
    result.timeOffset = {};
  }
  if (result.timeOffset.seconds === undefined) {
    result.timeOffset.seconds = 0;
  }
  if (result.timeOffset.nanos === undefined) {
    result.timeOffset.nanos = 0;
  }
  console.log(
    `\tTime: ${result.timeOffset.seconds}` +
      `.${(result.timeOffset.nanos / 1e6).toFixed(0)}s`
  );
  console.log(
    `\t\tPornography likelihood: ${likelihoods[result.pornographyLikelihood]}`
  );
});

Python

Untuk informasi selengkapnya tentang cara menginstal dan menggunakan Library Klien Cloud Video Intelligence API untuk Python, lihat Library Klien Cloud Video Intelligence API.
"""Detects explicit content from the GCS path to a video."""
video_client = videointelligence.VideoIntelligenceServiceClient()
features = [videointelligence.Feature.EXPLICIT_CONTENT_DETECTION]

operation = video_client.annotate_video(
    request={"features": features, "input_uri": path}
)
print("\nProcessing video for explicit content annotations:")

result = operation.result(timeout=90)
print("\nFinished processing.")

# Retrieve first result because a single video was processed
for frame in result.annotation_results[0].explicit_annotation.frames:
    likelihood = videointelligence.Likelihood(frame.pornography_likelihood)
    frame_time = frame.time_offset.seconds + frame.time_offset.microseconds / 1e6
    print("Time: {}s".format(frame_time))
    print("\tpornography: {}".format(likelihood.name))

Bahasa tambahan

C#: Ikuti Petunjuk penyiapan C# di halaman library klien lalu buka Dokumentasi referensi Video Intelligence untuk .NET.

PHP: Ikuti petunjuk penyiapan PHP di halaman library klien lalu kunjungi Dokumentasi referensi Video Intelligence untuk PHP.

Ruby: Ikuti petunjuk penyiapan Ruby di halaman library klien, lalu buka Dokumentasi referensi Video Intelligence untuk Ruby.