Mantenha tudo organizado com as coleções Salve e categorize o conteúdo com base nas suas preferências.

Como gerenciar modelos

Um modelo é treinado com um conjunto de dados preparado que você fornece. A classificação do AutoML Video Intelligence usa os itens do conjunto de dados para treinar, testar e avaliar o desempenho do modelo. Em seguida, analise os resultados, ajusta o conjunto de dados de treinamento conforme necessário e treina um novo modelo usando o conjunto de dados aprimorado.

Esse processo pode levar várias horas para ser concluído. A API AutoML permite verificar o status do treinamento.

Como a classificação do AutoML Video Intelligence cria um novo modelo a cada vez que você inicia o treinamento, o projeto pode incluir vários modelos. É possível conseguir uma lista dos modelos no projeto e excluir modelos que não forem mais necessários.

A vida útil máxima de um modelo é de dois anos. É necessário criar e treinar um novo modelo para continuar classificando o conteúdo após esse período.

Como usar curl ou PowerShell

Para facilitar a execução das amostras de curl (ou do PowerShell) neste tópico, defina a seguinte variável de ambiente. Substitua project-id pelo nome do projeto do GCP.

export PROJECT_ID="project-id"

Como treinar modelos;

Quando você tiver um conjunto de dados com um conjunto sólido de itens de treinamento rotulados, estará pronto para criar e treinar o modelo.

IU da Web

  1. Abra a IU do AutoML Video e navegue até a página Conjuntos de dados.

    Página de conjuntos de dados no Console do Google Cloud
  2. Selecione o conjunto de dados que você quer usar para treinar o modelo.

    O nome de exibição do conjunto de dados selecionado é exibido na barra de título, e a página relaciona os itens individuais no conjunto de dados com os respectivos rótulos.

    Guia "Vídeos" com dois vídeos exibidos
  3. Quando terminar de revisar o conjunto de dados, clique na guia Treinar logo abaixo da barra de título.

    A página de treinamento oferece uma análise básica do seu conjunto de dados e o orienta sobre a adequação do treinamento. Se o AutoML Video sugerir alterações, considere retornar à página Vídeos e adicionar itens ou rótulos.

  4. Quando o conjunto de dados estiver pronto, clique em Iniciar treinamento para criar um novo modelo ou Treinar novo modelo se quiser criar outro.

REST

Antes de usar os dados da solicitação, faça as substituições a seguir:

  • dataset-id: o código é o último elemento do nome do conjunto de dados. Por exemplo, se o nome do conjunto de dados for projects/434039606874/locations/us-central1/datasets/VCN3104518874390609379, o ID do modelo será VCN3104518874390609379
  • Observação:
    • project-number: o número do seu projeto
    • location-id: a região do Cloud em que a anotação deve ocorrer. As regiões de nuvem compatíveis são: us-east1, us-west1, europe-west1 e asia-east1. Se nenhuma região for especificada, uma região será determinada com base na localização do arquivo de vídeo.

Método HTTP e URL:

POST https://automl.googleapis.com/v1beta1/projects/project-number/locations/location-id/models

Corpo JSON da solicitação:

{
  "displayName": "test_model",
  "dataset_id": "dataset-id",
  "videoClassificationModelMetadata": {}
}

Para enviar a solicitação, escolha uma destas opções:

curl

Salve o corpo da solicitação em um arquivo chamado request.json e execute o comando a seguir:

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "x-goog-user-project: project-number" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://automl.googleapis.com/v1beta1/projects/project-number/locations/location-id/models"

PowerShell

Salve o corpo da solicitação em um arquivo chamado request.json e execute o comando a seguir:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred"; "x-goog-user-project" = "project-number" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://automl.googleapis.com/v1beta1/projects/project-number/locations/location-id/models" | Select-Object -Expand Content
O operation-id é fornecido na resposta quando você iniciou a operação, por exemplo, VCN123...
{
  "name": "projects/project-number/locations/location-id/operations/operation-id",
  "metadata": {
    "@type": "type.googleapis.com/google.cloud.automl.v1beta1.OperationMetadata",
    "progressPercentage": 100,
    "createTime": "2020-02-27T01:56:28.395640Z",
    "updateTime": "2020-02-27T02:04:12.336070Z"
  },
  "done": true,
  "response": {
    "@type": "type.googleapis.com/google.cloud.automl.v1beta1.Model",
    "name": "projects/project-number/locations/location-id/models/operation-id",
    "createTime": "2020-02-27T02:00:22.329970Z",
    "videoClassificationModelMetadata": {
      "trainBudget": "1",
      "trainCost": "1",
      "stopReason": "BUDGET_REACHED"
    },
    "displayName": "a_98487760535e48319dd204e6394670"
  }
}

Java

import com.google.api.gax.longrunning.OperationFuture;
import com.google.cloud.automl.v1beta1.AutoMlClient;
import com.google.cloud.automl.v1beta1.LocationName;
import com.google.cloud.automl.v1beta1.Model;
import com.google.cloud.automl.v1beta1.OperationMetadata;
import com.google.cloud.automl.v1beta1.VideoClassificationModelMetadata;
import java.io.IOException;
import java.util.concurrent.ExecutionException;

class VideoClassificationCreateModel {

  public static void main(String[] args)
      throws IOException, ExecutionException, InterruptedException {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "YOUR_PROJECT_ID";
    String datasetId = "YOUR_DATASET_ID";
    String displayName = "YOUR_DATASET_NAME";
    createModel(projectId, datasetId, displayName);
  }

  // Create a model
  static void createModel(String projectId, String datasetId, String displayName)
      throws IOException, ExecutionException, InterruptedException {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (AutoMlClient client = AutoMlClient.create()) {
      // A resource that represents Google Cloud Platform location.
      LocationName projectLocation = LocationName.of(projectId, "us-central1");
      // Set model metadata.
      VideoClassificationModelMetadata metadata =
          VideoClassificationModelMetadata.newBuilder().build();
      Model model =
          Model.newBuilder()
              .setDisplayName(displayName)
              .setDatasetId(datasetId)
              .setVideoClassificationModelMetadata(metadata)
              .build();

      // Create a model with the model metadata in the region.
      OperationFuture<Model, OperationMetadata> future =
          client.createModelAsync(projectLocation, model);
      // OperationFuture.get() will block until the model is created, which may take several hours.
      // You can use OperationFuture.getInitialFuture to get a future representing the initial
      // response to the request, which contains information while the operation is in progress.
      System.out.format("Training operation name: %s%n", future.getInitialFuture().get().getName());
      System.out.println("Training started...");
    }
  }
}

Node.js

/**
 * TODO(developer): Uncomment these variables before running the sample.
 */
// const projectId = 'YOUR_PROJECT_ID';
// const location = 'us-central1';
// const dataset_id = 'YOUR_DATASET_ID';
// const displayName = 'YOUR_DISPLAY_NAME';

// Imports the Google Cloud AutoML library
const {AutoMlClient} = require('@google-cloud/automl').v1beta1;

// Instantiates a client
const client = new AutoMlClient();

async function createModel() {
  // Construct request
  const request = {
    parent: client.locationPath(projectId, location),
    model: {
      displayName: displayName,
      datasetId: datasetId,
      videoClassificationModelMetadata: {},
    },
  };

  // Don't wait for the LRO
  const [operation] = await client.createModel(request);
  console.log(`Training started... ${operation}`);
  console.log(`Training operation name: ${operation.name}`);
}

createModel();

Python

from google.cloud import automl_v1beta1 as automl

def create_model(
    project_id="YOUR_PROJECT_ID",
    dataset_id="YOUR_DATASET_ID",
    display_name="your_models_display_name",
):
    """Create a automl video classification model."""
    client = automl.AutoMlClient()

    # A resource that represents Google Cloud Platform location.
    project_location = f"projects/{project_id}/locations/us-central1"
    # Leave model unset to use the default base model provided by Google
    metadata = automl.VideoClassificationModelMetadata()
    model = automl.Model(
        display_name=display_name,
        dataset_id=dataset_id,
        video_classification_model_metadata=metadata,
    )

    # Create a model with the model metadata in the region.
    response = client.create_model(parent=project_location, model=model)

    print("Training operation name: {}".format(response.operation.name))
    print("Training started...")

Como conseguir informações sobre um modelo

Quando o treinamento estiver concluído, você poderá conseguir informações sobre o modelo recém-criado.

Nesta seção, os exemplos retornam os metadados básicos sobre um modelo. Para ver detalhes sobre a precisão e a prontidão de um modelo, consulte Como avaliar modelos.

IU da Web

  1. Navegue até a página Modelos na IU do AutoML Video.

    Página "Modelos" com um modelo exibido
  2. Clique no nome do modelo que você quer ver.

REST

Antes de usar os dados da solicitação, faça as substituições a seguir:

  • model-name: o nome completo do modelo fornecido pela resposta quando você o criou. O nome completo tem o formato: projects/project-number/locations/location-id/models/model-id
  • dataset-id: substitua pelo identificador do conjunto de dados do seu conjunto de dados (e não pelo nome de exibição). Por exemplo: VCN3940649673949184000
  • project-number: o número do seu projeto

Método HTTP e URL:

GET https://automl.googleapis.com/v1beta1/model-name/modelEvaluations

Corpo JSON da solicitação:

{
  "displayName": "test_model",
  "dataset_id": "dataset-id",
  "videoClassificationModelMetadata": {}
}

Para enviar a solicitação, expanda uma destas opções:

Você receberá uma resposta JSON semelhante a esta:

Java

import com.google.cloud.automl.v1beta1.AutoMlClient;
import com.google.cloud.automl.v1beta1.Model;
import com.google.cloud.automl.v1beta1.ModelName;
import io.grpc.StatusRuntimeException;
import java.io.IOException;

class GetModel {

  static void getModel() throws IOException, StatusRuntimeException {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "YOUR_PROJECT_ID";
    String modelId = "YOUR_MODEL_ID";
    getModel(projectId, modelId);
  }

  // Get a model
  static void getModel(String projectId, String modelId)
      throws IOException, StatusRuntimeException {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (AutoMlClient client = AutoMlClient.create()) {
      // Get the full path of the model.
      ModelName modelFullId = ModelName.of(projectId, "us-central1", modelId);
      Model model = client.getModel(modelFullId);

      // Display the model information.
      System.out.format("Model name: %s%n", model.getName());
      // To get the model id, you have to parse it out of the `name` field. As models Ids are
      // required for other methods.
      // Name Format: `projects/{project_id}/locations/{location_id}/models/{model_id}`
      String[] names = model.getName().split("/");
      String retrievedModelId = names[names.length - 1];
      System.out.format("Model id: %s%n", retrievedModelId);
      System.out.format("Model display name: %s%n", model.getDisplayName());
      System.out.println("Model create time:");
      System.out.format("\tseconds: %s%n", model.getCreateTime().getSeconds());
      System.out.format("\tnanos: %s%n", model.getCreateTime().getNanos());
      System.out.format("Model deployment state: %s%n", model.getDeploymentState());
    }
  }
}

Node.js

/**
 * TODO(developer): Uncomment these variables before running the sample.
 */
// const projectId = 'YOUR_PROJECT_ID';
// const location = 'us-central1';
// const modelId = 'YOUR_MODEL_ID';

// Imports the Google Cloud AutoML library
const {AutoMlClient} = require('@google-cloud/automl').v1beta1;

// Instantiates a client
const client = new AutoMlClient();

async function getModel() {
  // Construct request
  const request = {
    name: client.modelPath(projectId, location, modelId),
  };

  const [response] = await client.getModel(request);

  console.log(`Model name: ${response.name}`);
  console.log(
    `Model id: ${
      response.name.split('/')[response.name.split('/').length - 1]
    }`
  );
  console.log(`Model display name: ${response.displayName}`);
  console.log('Model create time');
  console.log(`\tseconds ${response.createTime.seconds}`);
  console.log(`\tnanos ${response.createTime.nanos / 1e9}`);
  console.log(`Model deployment state: ${response.deploymentState}`);
}

getModel();

Python

from google.cloud import automl_v1beta1 as automl

# TODO(developer): Uncomment and set the following variables
# project_id = "YOUR_PROJECT_ID"
# model_id = "YOUR_MODEL_ID"

client = automl.AutoMlClient()
# Get the full path of the model.
model_full_id = client.model_path(project_id, "us-central1", model_id)
model = client.get_model(name=model_full_id)

# Retrieve deployment state.
if model.deployment_state == automl.Model.DeploymentState.DEPLOYED:
    deployment_state = "deployed"
else:
    deployment_state = "undeployed"

# Display the model information.
print("Model name: {}".format(model.name))
print("Model id: {}".format(model.name.split("/")[-1]))
print("Model display name: {}".format(model.display_name))
print("Model create time: {}".format(model.create_time))
print("Model deployment state: {}".format(deployment_state))

Como listar modelos

Um projeto pode incluir vários modelos. Nesta seção, descrevemos como recuperar uma lista dos modelos disponíveis para um projeto.

IU da Web

Navegue até a página Modelos na IU do AutoML Video para ver os modelos em seu projeto.

Página "Modelos" com um modelo na lista

Para ver os modelos de outro projeto, selecione o projeto na lista suspensa, na parte superior direita da barra de título.

REST

Antes de usar os dados da solicitação, faça as substituições a seguir:

  • model-name: o nome completo do modelo fornecido pela resposta quando você o criou. O nome completo tem o formato: projects/project-number/locations/location-id/models
  • Observação:
    • project-number: o número do seu projeto
    • location-id: a região do Cloud em que a anotação deve ocorrer. As regiões de nuvem compatíveis são: us-east1, us-west1, europe-west1 e asia-east1. Se nenhuma região for especificada, uma região será determinada com base na localização do arquivo de vídeo.

Método HTTP e URL:

GET https://automl.googleapis.com/v1beta1/projects/project-number/locations/location-id/models

Para enviar a solicitação, expanda uma destas opções:

Você receberá uma resposta JSON semelhante a esta:

Java

import com.google.cloud.automl.v1beta1.AutoMlClient;
import com.google.cloud.automl.v1beta1.ListModelsRequest;
import com.google.cloud.automl.v1beta1.LocationName;
import com.google.cloud.automl.v1beta1.Model;
import java.io.IOException;

class ListModels {

  static void listModels() throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "YOUR_PROJECT_ID";
    listModels(projectId);
  }

  // List the models available in the specified location
  static void listModels(String projectId) throws IOException {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (AutoMlClient client = AutoMlClient.create()) {
      // A resource that represents Google Cloud Platform location.
      LocationName projectLocation = LocationName.of(projectId, "us-central1");

      // Create list models request.
      ListModelsRequest listModelsRequest =
          ListModelsRequest.newBuilder()
              .setParent(projectLocation.toString())
              .setFilter("")
              .build();

      // List all the models available in the region by applying filter.
      System.out.println("List of models:");
      for (Model model : client.listModels(listModelsRequest).iterateAll()) {
        // Display the model information.
        System.out.format("Model name: %s%n", model.getName());
        // To get the model id, you have to parse it out of the `name` field. As models Ids are
        // required for other methods.
        // Name Format: `projects/{project_id}/locations/{location_id}/models/{model_id}`
        String[] names = model.getName().split("/");
        String retrievedModelId = names[names.length - 1];
        System.out.format("Model id: %s%n", retrievedModelId);
        System.out.format("Model display name: %s%n", model.getDisplayName());
        System.out.println("Model create time:");
        System.out.format("\tseconds: %s%n", model.getCreateTime().getSeconds());
        System.out.format("\tnanos: %s%n", model.getCreateTime().getNanos());
        System.out.format("Model deployment state: %s%n", model.getDeploymentState());
      }
    }
  }
}

Node.js

/**
 * TODO(developer): Uncomment these variables before running the sample.
 */
// const projectId = 'YOUR_PROJECT_ID';
// const location = 'us-central1';

// Imports the Google Cloud AutoML library
const {AutoMlClient} = require('@google-cloud/automl').v1beta1;

// Instantiates a client
const client = new AutoMlClient();

async function listModels() {
  // Construct request
  const request = {
    parent: client.locationPath(projectId, location),
    filter: 'translation_model_metadata:*',
  };

  const [response] = await client.listModels(request);

  console.log('List of models:');
  for (const model of response) {
    console.log(`Model name: ${model.name}`);
    console.log(`
      Model id: ${model.name.split('/')[model.name.split('/').length - 1]}`);
    console.log(`Model display name: ${model.displayName}`);
    console.log('Model create time');
    console.log(`\tseconds ${model.createTime.seconds}`);
    console.log(`\tnanos ${model.createTime.nanos / 1e9}`);
    console.log(`Model deployment state: ${model.deploymentState}`);
  }
}

listModels();

Python

from google.cloud import automl_v1beta1 as automl

# TODO(developer): Uncomment and set the following variables
# project_id = "YOUR_PROJECT_ID"

client = automl.AutoMlClient()
# A resource that represents Google Cloud Platform location.
project_location = f"projects/{project_id}/locations/us-central1"
request = automl.ListModelsRequest(parent=project_location, filter="")
response = client.list_models(request=request)

print("List of models:")
for model in response:
    # Display the model information.
    if (
        model.deployment_state
        == automl.Model.DeploymentState.DEPLOYED
    ):
        deployment_state = "deployed"
    else:
        deployment_state = "undeployed"

    print("Model name: {}".format(model.name))
    print("Model id: {}".format(model.name.split("/")[-1]))
    print("Model display name: {}".format(model.display_name))
    print("Model create time: {}".format(model.create_time))
    print("Model deployment state: {}".format(deployment_state))

exclusão de um modelo

No exemplo a seguir, excluímos um modelo.

IU da Web

  1. Navegue até a página Modelos na IU do AutoML Video.Página "Modelos" com um modelo exibido
  2. Clique no menu de três pontos à direita da linha que você quer excluir e selecione Excluir.
  3. Clique em Confirmar na caixa de diálogo de confirmação.

REST

Antes de usar os dados da solicitação, faça as substituições a seguir:

  • model-id: substitua pelo identificador do modelo;
  • Observação:
    • project-number: o número do seu projeto
    • location-id: a região do Cloud em que a anotação deve ocorrer. As regiões de nuvem compatíveis são: us-east1, us-west1, europe-west1 e asia-east1. Se nenhuma região for especificada, uma região será determinada com base na localização do arquivo de vídeo.

Método HTTP e URL:

DELETE https://automl.googleapis.com/v1beta1/projects/project-number/locations/test/models/model-id

Para enviar a solicitação, expanda uma destas opções:

Você receberá uma resposta JSON semelhante a esta:

Java

import com.google.cloud.automl.v1beta1.AutoMlClient;
import com.google.cloud.automl.v1beta1.ModelName;
import com.google.protobuf.Empty;
import java.io.IOException;
import java.util.concurrent.ExecutionException;

class DeleteModel {

  public static void main(String[] args)
      throws IOException, ExecutionException, InterruptedException {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "YOUR_PROJECT_ID";
    String modelId = "YOUR_MODEL_ID";
    deleteModel(projectId, modelId);
  }

  // Delete a model
  static void deleteModel(String projectId, String modelId)
      throws IOException, ExecutionException, InterruptedException {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (AutoMlClient client = AutoMlClient.create()) {
      // Get the full path of the model.
      ModelName modelFullId = ModelName.of(projectId, "us-central1", modelId);

      // Delete a model.
      Empty response = client.deleteModelAsync(modelFullId).get();

      System.out.println("Model deletion started...");
      System.out.println(String.format("Model deleted. %s", response));
    }
  }
}

Node.js

/**
 * TODO(developer): Uncomment these variables before running the sample.
 */
// const projectId = 'YOUR_PROJECT_ID';
// const location = 'us-central1';
// const modelId = 'YOUR_MODEL_ID';

// Imports the Google Cloud AutoML library
const {AutoMlClient} = require('@google-cloud/automl').v1beta1;

// Instantiates a client
const client = new AutoMlClient();

async function deleteModel() {
  // Construct request
  const request = {
    name: client.modelPath(projectId, location, modelId),
  };

  const [response] = await client.deleteModel(request);
  console.log(`Model deleted: ${response}`);
}

deleteModel();

Python

from google.cloud import automl_v1beta1 as automl

# TODO(developer): Uncomment and set the following variables
# project_id = "YOUR_PROJECT_ID"
# model_id = "YOUR_MODEL_ID"

client = automl.AutoMlClient()
# Get the full path of the model.
model_full_id = client.model_path(project_id, "us-central1", model_id)
response = client.delete_model(name=model_full_id)

print("Model deleted. {}".format(response.result()))