Ajuster Gemini à l'aide de paramètres personnalisés pour les cas d'utilisation avancés

Ajustez un modèle d'IA générative à l'aide du réglage fin supervisé Vertex AI avec des paramètres avancés.

En savoir plus

Pour obtenir une documentation détaillée incluant cet exemple de code, consultez les articles suivants :

Exemple de code

Python

Avant d'essayer cet exemple, suivez les instructions de configuration pour Python décrites dans le guide de démarrage rapide de Vertex AI à l'aide des bibliothèques clientes. Pour en savoir plus, consultez la documentation de référence de l'API Vertex AI Python.

Pour vous authentifier auprès de Vertex AI, configurez le service Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.


import time

import vertexai
from vertexai.tuning import sft

# TODO(developer): Update and un-comment below line
# PROJECT_ID = "your-project-id"
vertexai.init(project=PROJECT_ID, location="us-central1")

# Initialize Vertex AI with your service account for BYOSA (Bring Your Own Service Account).
# Uncomment the following and replace "your-service-account"
# vertexai.init(service_account="your-service-account")

# Initialize Vertex AI with your CMEK (Customer-Managed Encryption Key).
# Un-comment the following line and replace "your-kms-key"
# vertexai.init(encryption_spec_key_name="your-kms-key")

sft_tuning_job = sft.train(
    source_model="gemini-1.5-pro-002",
    train_dataset="gs://cloud-samples-data/ai-platform/generative_ai/gemini-1_5/text/sft_train_data.jsonl",
    # The following parameters are optional
    validation_dataset="gs://cloud-samples-data/ai-platform/generative_ai/gemini-1_5/text/sft_validation_data.jsonl",
    epochs=4,
    adapter_size=4,
    learning_rate_multiplier=1.0,
    tuned_model_display_name="tuned_gemini_1_5_pro",
)

# Polling for job completion
while not sft_tuning_job.has_ended:
    time.sleep(60)
    sft_tuning_job.refresh()

print(sft_tuning_job.tuned_model_name)
print(sft_tuning_job.tuned_model_endpoint_name)
print(sft_tuning_job.experiment)
# Example response:
# projects/123456789012/locations/us-central1/models/1234567890@1
# projects/123456789012/locations/us-central1/endpoints/123456789012345
# <google.cloud.aiplatform.metadata.experiment_resources.Experiment object at 0x7b5b4ae07af0>

Étape suivante

Pour rechercher et filtrer des exemples de code pour d'autres Google Cloud produits, consultez l'explorateur d'exemplesGoogle Cloud .