Utilizza la guida rapida per acquisire familiarità con le RAG

Questa guida rapida mostra come utilizzare l'API RAG.

Per saperne di più

Per la documentazione dettagliata che include questo esempio di codice, vedi quanto segue:

Esempio di codice

Python

Prima di provare questo esempio, segui le istruzioni di configurazione di Python nella guida rapida di Vertex AI per l'utilizzo delle librerie client. Per saperne di più, consulta la documentazione di riferimento dell'API Vertex AI Python.

Per autenticarti in Vertex AI, configura le Credenziali predefinite dell'applicazione. Per ulteriori informazioni, consulta Configura l'autenticazione per un ambiente di sviluppo locale.

from vertexai import rag
from vertexai.generative_models import GenerativeModel, Tool
import vertexai

# Create a RAG Corpus, Import Files, and Generate a response

# TODO(developer): Update and un-comment below lines
# PROJECT_ID = "your-project-id"
# display_name = "test_corpus"
# paths = ["https://drive.google.com/file/d/123", "gs://my_bucket/my_files_dir"]  # Supports Google Cloud Storage and Google Drive Links

# Initialize Vertex AI API once per session
vertexai.init(project=PROJECT_ID, location="us-central1")

# Create RagCorpus
# Configure embedding model, for example "text-embedding-005".
embedding_model_config = rag.RagEmbeddingModelConfig(
    vertex_prediction_endpoint=rag.VertexPredictionEndpoint(
        publisher_model="publishers/google/models/text-embedding-005"
    )
)

rag_corpus = rag.create_corpus(
    display_name=display_name,
    backend_config=rag.RagVectorDbConfig(
        rag_embedding_model_config=embedding_model_config
    ),
)

# Import Files to the RagCorpus
rag.import_files(
    rag_corpus.name,
    paths,
    # Optional
    transformation_config=rag.TransformationConfig(
        chunking_config=rag.ChunkingConfig(
            chunk_size=512,
            chunk_overlap=100,
        ),
    ),
    max_embedding_requests_per_min=1000,  # Optional
)

# Direct context retrieval
rag_retrieval_config = rag.RagRetrievalConfig(
    top_k=3,  # Optional
    filter=rag.Filter(vector_distance_threshold=0.5),  # Optional
)
response = rag.retrieval_query(
    rag_resources=[
        rag.RagResource(
            rag_corpus=rag_corpus.name,
            # Optional: supply IDs from `rag.list_files()`.
            # rag_file_ids=["rag-file-1", "rag-file-2", ...],
        )
    ],
    text="What is RAG and why it is helpful?",
    rag_retrieval_config=rag_retrieval_config,
)
print(response)

# Enhance generation
# Create a RAG retrieval tool
rag_retrieval_tool = Tool.from_retrieval(
    retrieval=rag.Retrieval(
        source=rag.VertexRagStore(
            rag_resources=[
                rag.RagResource(
                    rag_corpus=rag_corpus.name,  # Currently only 1 corpus is allowed.
                    # Optional: supply IDs from `rag.list_files()`.
                    # rag_file_ids=["rag-file-1", "rag-file-2", ...],
                )
            ],
            rag_retrieval_config=rag_retrieval_config,
        ),
    )
)

# Create a Gemini model instance
rag_model = GenerativeModel(
    model_name="gemini-2.0-flash-001", tools=[rag_retrieval_tool]
)

# Generate response
response = rag_model.generate_content("What is RAG and why it is helpful?")
print(response.text)
# Example response:
#   RAG stands for Retrieval-Augmented Generation.
#   It's a technique used in AI to enhance the quality of responses
# ...

Passaggi successivi

Per cercare e filtrare gli esempi di codice per altri prodotti Google Cloud , consulta il browser degli esempi diGoogle Cloud .