生成 AI を使用してマルチモーダル データからコンテンツを生成する

このサンプルでは、テキスト、画像、動画の組み合わせからコンテンツを生成する機能を紹介します。

さらに詳しい情報

このコードサンプルを含む詳細なドキュメントについては、以下をご覧ください。

コードサンプル

Java

このサンプルを試す前に、Vertex AI クイックスタート: クライアント ライブラリの使用にある Java の設定手順を完了してください。 詳細については、Vertex AI Java API のリファレンス ドキュメントをご覧ください。

Vertex AI に対する認証を行うには、アプリケーションのデフォルト認証情報を設定します。詳細については、ローカル開発環境の認証を設定するをご覧ください。

import com.google.cloud.vertexai.VertexAI;
import com.google.cloud.vertexai.api.GenerateContentResponse;
import com.google.cloud.vertexai.generativeai.ContentMaker;
import com.google.cloud.vertexai.generativeai.GenerativeModel;
import com.google.cloud.vertexai.generativeai.PartMaker;
import com.google.cloud.vertexai.generativeai.ResponseHandler;

public class Multimodal {
  public static void main(String[] args) throws Exception {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "your-google-cloud-project-id";
    String location = "us-central1";
    String modelName = "gemini-1.5-flash-001";

    String output = nonStreamingMultimodal(projectId, location, modelName);
    System.out.println(output);
  }

  // Ask a simple question and get the response.
  public static String nonStreamingMultimodal(String projectId, String location, String modelName)
      throws Exception {
    // Initialize client that will be used to send requests.
    // This client only needs to be created once, and can be reused for multiple requests.
    try (VertexAI vertexAI = new VertexAI(projectId, location)) {
      GenerativeModel model = new GenerativeModel(modelName, vertexAI);

      String videoUri = "gs://cloud-samples-data/video/animals.mp4";
      String imgUri = "gs://cloud-samples-data/generative-ai/image/character.jpg";

      // Get the response from the model.
      GenerateContentResponse response = model.generateContent(
          ContentMaker.fromMultiModalData(
              PartMaker.fromMimeTypeAndData("video/mp4", videoUri),
              PartMaker.fromMimeTypeAndData("image/jpeg", imgUri),
              "Are this video and image correlated?"
          ));

      // Extract the generated text from the model's response.
      String output = ResponseHandler.getText(response);
      return output;
    }
  }
}

Node.js

このサンプルを試す前に、Vertex AI クイックスタート: クライアント ライブラリの使用にある Node.js の設定手順を完了してください。詳細については、Vertex AI Node.js API のリファレンス ドキュメントをご覧ください。

Vertex AI に対する認証を行うには、アプリケーションのデフォルト認証情報を設定します。詳細については、ローカル開発環境の認証を設定するをご覧ください。

const {VertexAI} = require('@google-cloud/vertexai');

/**
 * TODO(developer): Update these variables before running the sample.
 */
const PROJECT_ID = process.env.CAIP_PROJECT_ID;
const LOCATION = 'us-central1';
const MODEL = 'gemini-1.5-flash-001';

async function generateContent() {
  // Initialize Vertex AI
  const vertexAI = new VertexAI({project: PROJECT_ID, location: LOCATION});
  const generativeModel = vertexAI.getGenerativeModel({model: MODEL});

  const request = {
    contents: [
      {
        role: 'user',
        parts: [
          {
            file_data: {
              file_uri: 'gs://cloud-samples-data/video/animals.mp4',
              mime_type: 'video/mp4',
            },
          },
          {
            file_data: {
              file_uri:
                'gs://cloud-samples-data/generative-ai/image/character.jpg',
              mime_type: 'image/jpeg',
            },
          },
          {text: 'Are this video and image correlated?'},
        ],
      },
    ],
  };

  const result = await generativeModel.generateContent(request);

  console.log(result.response.candidates[0].content.parts[0].text);
}

Python

このサンプルを試す前に、Vertex AI クイックスタート: クライアント ライブラリの使用にある Python の設定手順を完了してください。詳細については、Vertex AI Python API のリファレンス ドキュメントをご覧ください。

Vertex AI に対する認証を行うには、アプリケーションのデフォルト認証情報を設定します。詳細については、ローカル開発環境の認証を設定するをご覧ください。

import vertexai

from vertexai.generative_models import GenerativeModel, Part

vertexai.init(project=PROJECT_ID, location="us-central1")

model = GenerativeModel("gemini-1.5-flash-002")
response = model.generate_content(
    [
        Part.from_uri(
            "gs://cloud-samples-data/generative-ai/video/animals.mp4", "video/mp4"
        ),
        Part.from_uri(
            "gs://cloud-samples-data/generative-ai/image/character.jpg",
            "image/jpeg",
        ),
        "Are these video and image correlated?",
    ]
)

print(response.text)

次のステップ

他の Google Cloud プロダクトに関連するコードサンプルの検索およびフィルタ検索を行うには、Google Cloud のサンプルをご覧ください。