Genera embedding per input multimodale

Questo esempio di codice mostra come utilizzare il modello multimodale per generare incorporamenti per input di testo e immagini.

Per saperne di più

Per la documentazione dettagliata che include questo esempio di codice, consulta quanto segue:

Esempio di codice

Go

Prima di provare questo esempio, segui le istruzioni di configurazione Go riportate nella guida rapida all'utilizzo delle librerie client di Vertex AI. Per ulteriori informazioni, consulta la documentazione di riferimento dell'API Go di Vertex AI.

Per autenticarti a Vertex AI, configura le Credenziali predefinite dell'applicazione. Per ulteriori informazioni, consulta Configurare l'autenticazione per un ambiente di sviluppo locale.

import (
	"context"
	"encoding/json"
	"fmt"
	"io"

	aiplatform "cloud.google.com/go/aiplatform/apiv1beta1"
	aiplatformpb "cloud.google.com/go/aiplatform/apiv1beta1/aiplatformpb"
	"google.golang.org/api/option"
	"google.golang.org/protobuf/encoding/protojson"
	"google.golang.org/protobuf/types/known/structpb"
)

// generateForTextAndImage shows how to use the multimodal model to generate embeddings for
// text and image inputs.
func generateForTextAndImage(w io.Writer, project, location string) error {
	// location = "us-central1"
	ctx := context.Background()
	apiEndpoint := fmt.Sprintf("%s-aiplatform.googleapis.com:443", location)
	client, err := aiplatform.NewPredictionClient(ctx, option.WithEndpoint(apiEndpoint))
	if err != nil {
		return fmt.Errorf("failed to construct API client: %w", err)
	}
	defer client.Close()

	model := "multimodalembedding@001"
	endpoint := fmt.Sprintf("projects/%s/locations/%s/publishers/google/models/%s", project, location, model)

	// This is the input to the model's prediction call. For schema, see:
	// https://cloud.google.com/vertex-ai/generative-ai/docs/model-reference/multimodal-embeddings-api#request_body
	instance, err := structpb.NewValue(map[string]any{
		"image": map[string]any{
			// Image input can be provided either as a Google Cloud Storage URI or as
			// base64-encoded bytes using the "bytesBase64Encoded" field.
			"gcsUri": "gs://cloud-samples-data/vertex-ai/llm/prompts/landmark1.png",
		},
		"text": "Colosseum",
	})
	if err != nil {
		return fmt.Errorf("failed to construct request payload: %w", err)
	}

	req := &aiplatformpb.PredictRequest{
		Endpoint: endpoint,
		// The model supports only 1 instance per request.
		Instances: []*structpb.Value{instance},
	}

	resp, err := client.Predict(ctx, req)
	if err != nil {
		return fmt.Errorf("failed to generate embeddings: %w", err)
	}

	instanceEmbeddingsJson, err := protojson.Marshal(resp.GetPredictions()[0])
	if err != nil {
		return fmt.Errorf("failed to convert protobuf value to JSON: %w", err)
	}
	// For response schema, see:
	// https://cloud.google.com/vertex-ai/generative-ai/docs/model-reference/multimodal-embeddings-api#response-body
	var instanceEmbeddings struct {
		ImageEmbeddings []float32 `json:"imageEmbedding"`
		TextEmbeddings  []float32 `json:"textEmbedding"`
	}
	if err := json.Unmarshal(instanceEmbeddingsJson, &instanceEmbeddings); err != nil {
		return fmt.Errorf("failed to unmarshal JSON: %w", err)
	}

	imageEmbedding := instanceEmbeddings.ImageEmbeddings
	textEmbedding := instanceEmbeddings.TextEmbeddings

	fmt.Fprintf(w, "Text embedding (length=%d): %v\n", len(textEmbedding), textEmbedding)
	fmt.Fprintf(w, "Image embedding (length=%d): %v\n", len(imageEmbedding), imageEmbedding)
	// Example response:
	// Text embedding (length=1408): [0.0023026613 0.027898183 -0.011858357 ... ]
	// Image embedding (length=1408): [-0.012314269 0.07271844 0.00020170923 ... ]

	return nil
}

Python

Prima di provare questo esempio, segui le istruzioni di configurazione Python riportate nella guida rapida all'utilizzo delle librerie client di Vertex AI. Per ulteriori informazioni, consulta la documentazione di riferimento dell'API Python di Vertex AI.

Per autenticarti a Vertex AI, configura le Credenziali predefinite dell'applicazione. Per ulteriori informazioni, consulta Configurare l'autenticazione per un ambiente di sviluppo locale.

import vertexai
from vertexai.vision_models import Image, MultiModalEmbeddingModel

# TODO(developer): Update & uncomment line below
# PROJECT_ID = "your-project-id"
vertexai.init(project=PROJECT_ID, location="us-central1")

model = MultiModalEmbeddingModel.from_pretrained("multimodalembedding@001")
image = Image.load_from_file(
    "gs://cloud-samples-data/vertex-ai/llm/prompts/landmark1.png"
)

embeddings = model.get_embeddings(
    image=image,
    contextual_text="Colosseum",
    dimension=1408,
)
print(f"Image Embedding: {embeddings.image_embedding}")
print(f"Text Embedding: {embeddings.text_embedding}")
# Example response:
# Image Embedding: [-0.0123147098, 0.0727171078, ...]
# Text Embedding: [0.00230263756, 0.0278981831, ...]

Passaggi successivi

Per cercare e filtrare i sample di codice per altri prodotti Google Cloud , consulta il Google Cloud browser di sample.