A partire dal 29 aprile 2025, i modelli Gemini 1.5 Pro e Gemini 1.5 Flash non sono disponibili nei progetti che non li hanno mai utilizzati, inclusi i nuovi progetti. Per maggiori dettagli, vedi
Versioni e ciclo di vita dei modelli.
Genera embedding per input multimodale
Mantieni tutto organizzato con le raccolte
Salva e classifica i contenuti in base alle tue preferenze.
Questo esempio di codice mostra come utilizzare il modello multimodale per generare incorporamenti per input di testo e immagini.
Per saperne di più
Per la documentazione dettagliata che include questo esempio di codice, vedi quanto segue:
Esempio di codice
Salvo quando diversamente specificato, i contenuti di questa pagina sono concessi in base alla licenza Creative Commons Attribution 4.0, mentre gli esempi di codice sono concessi in base alla licenza Apache 2.0. Per ulteriori dettagli, consulta le norme del sito di Google Developers. Java è un marchio registrato di Oracle e/o delle sue consociate.
[[["Facile da capire","easyToUnderstand","thumb-up"],["Il problema è stato risolto","solvedMyProblem","thumb-up"],["Altra","otherUp","thumb-up"]],[["Difficile da capire","hardToUnderstand","thumb-down"],["Informazioni o codice di esempio errati","incorrectInformationOrSampleCode","thumb-down"],["Mancano le informazioni o gli esempi di cui ho bisogno","missingTheInformationSamplesINeed","thumb-down"],["Problema di traduzione","translationIssue","thumb-down"],["Altra","otherDown","thumb-down"]],[],[],[],null,["# Generate embeddings for multimodal input\n\nThis code sample shows how to use the multimodal model to generate embeddings for text and image inputs.\n\nExplore further\n---------------\n\n\nFor detailed documentation that includes this code sample, see the following:\n\n- [Get multimodal embeddings](/vertex-ai/generative-ai/docs/embeddings/get-multimodal-embeddings)\n- [Multimodal embeddings API](/vertex-ai/generative-ai/docs/model-reference/multimodal-embeddings-api)\n\nCode sample\n-----------\n\n### Go\n\n\nBefore trying this sample, follow the Go setup instructions in the\n[Vertex AI quickstart using\nclient libraries](/vertex-ai/docs/start/client-libraries).\n\n\nFor more information, see the\n[Vertex AI Go API\nreference documentation](/go/docs/reference/cloud.google.com/go/aiplatform/latest/apiv1).\n\n\nTo authenticate to Vertex AI, set up Application Default Credentials.\nFor more information, see\n\n[Set up authentication for a local development environment](/docs/authentication/set-up-adc-local-dev-environment).\n\n import (\n \t\"context\"\n \t\"encoding/json\"\n \t\"fmt\"\n \t\"io\"\n\n \taiplatform \"cloud.google.com/go/aiplatform/apiv1beta1\"\n \taiplatformpb \"cloud.google.com/go/aiplatform/apiv1beta1/aiplatformpb\"\n \t\"google.golang.org/api/option\"\n \t\"google.golang.org/protobuf/encoding/protojson\"\n \t\"google.golang.org/protobuf/types/known/structpb\"\n )\n\n // generateForTextAndImage shows how to use the multimodal model to generate embeddings for\n // text and image inputs.\n func generateForTextAndImage(w io.Writer, project, location string) error {\n \t// location = \"us-central1\"\n \tctx := context.Background()\n \tapiEndpoint := fmt.Sprintf(\"%s-aiplatform.googleapis.com:443\", location)\n \tclient, err := aiplatform.https://cloud.google.com/go/docs/reference/cloud.google.com/go/aiplatform/latest/apiv1beta1.html#cloud_google_com_go_aiplatform_apiv1beta1_PredictionClient_NewPredictionClient(ctx, option.WithEndpoint(apiEndpoint))\n \tif err != nil {\n \t\treturn fmt.Errorf(\"failed to construct API client: %w\", err)\n \t}\n \tdefer client.Close()\n\n \tmodel := \"multimodalembedding@001\"\n \tendpoint := fmt.Sprintf(\"projects/%s/locations/%s/publishers/google/models/%s\", project, location, model)\n\n \t// This is the input to the model's prediction call. For schema, see:\n \t// https://cloud.google.com/vertex-ai/generative-ai/docs/model-reference/multimodal-embeddings-api#request_body\n \tinstance, err := structpb.NewValue(map[string]any{\n \t\t\"image\": map[string]any{\n \t\t\t// Image input can be provided either as a Google Cloud Storage URI or as\n \t\t\t// base64-encoded bytes using the \"bytesBase64Encoded\" field.\n \t\t\t\"gcsUri\": \"gs://cloud-samples-data/vertex-ai/llm/prompts/landmark1.png\",\n \t\t},\n \t\t\"text\": \"Colosseum\",\n \t})\n \tif err != nil {\n \t\treturn fmt.Errorf(\"failed to construct request payload: %w\", err)\n \t}\n\n \treq := &aiplatformpb.PredictRequest{\n \t\tEndpoint: endpoint,\n \t\t// The model supports only 1 instance per request.\n \t\tInstances: []*structpb.Value{instance},\n \t}\n\n \tresp, err := client.Predict(ctx, req)\n \tif err != nil {\n \t\treturn fmt.Errorf(\"failed to generate embeddings: %w\", err)\n \t}\n\n \tinstanceEmbeddingsJson, err := protojson.Marshal(resp.GetPredictions()[0])\n \tif err != nil {\n \t\treturn fmt.Errorf(\"failed to convert protobuf value to JSON: %w\", err)\n \t}\n \t// For response schema, see:\n \t// https://cloud.google.com/vertex-ai/generative-ai/docs/model-reference/multimodal-embeddings-api#response-body\n \tvar instanceEmbeddings struct {\n \t\tImageEmbeddings []float32 `json:\"imageEmbedding\"`\n \t\tTextEmbeddings []float32 `json:\"textEmbedding\"`\n \t}\n \tif err := json.Unmarshal(instanceEmbeddingsJson, &instanceEmbeddings); err != nil {\n \t\treturn fmt.Errorf(\"failed to unmarshal JSON: %w\", err)\n \t}\n\n \timageEmbedding := instanceEmbeddings.ImageEmbeddings\n \ttextEmbedding := instanceEmbeddings.TextEmbeddings\n\n \tfmt.Fprintf(w, \"Text embedding (length=%d): %v\\n\", len(textEmbedding), textEmbedding)\n \tfmt.Fprintf(w, \"Image embedding (length=%d): %v\\n\", len(imageEmbedding), imageEmbedding)\n \t// Example response:\n \t// Text embedding (length=1408): [0.0023026613 0.027898183 -0.011858357 ... ]\n \t// Image embedding (length=1408): [-0.012314269 0.07271844 0.00020170923 ... ]\n\n \treturn nil\n }\n\n### Python\n\n\nBefore trying this sample, follow the Python setup instructions in the\n[Vertex AI quickstart using\nclient libraries](/vertex-ai/docs/start/client-libraries).\n\n\nFor more information, see the\n[Vertex AI Python API\nreference documentation](/python/docs/reference/aiplatform/latest).\n\n\nTo authenticate to Vertex AI, set up Application Default Credentials.\nFor more information, see\n\n[Set up authentication for a local development environment](/docs/authentication/set-up-adc-local-dev-environment).\n\n import https://cloud.google.com/python/docs/reference/vertexai/latest/\n from vertexai.vision_models import https://cloud.google.com/python/docs/reference/vertexai/latest/vertexai.preview.generative_models.Image.html, https://cloud.google.com/python/docs/reference/vertexai/latest/vertexai.preview.vision_models.MultiModalEmbeddingModel.html\n\n # TODO(developer): Update & uncomment line below\n # PROJECT_ID = \"your-project-id\"\n https://cloud.google.com/python/docs/reference/vertexai/latest/.init(project=PROJECT_ID, location=\"us-central1\")\n\n model = https://cloud.google.com/python/docs/reference/vertexai/latest/vertexai.preview.vision_models.MultiModalEmbeddingModel.html.https://cloud.google.com/python/docs/reference/vertexai/latest/vertexai.preview.vision_models.MultiModalEmbeddingModel.html#vertexai_preview_vision_models_MultiModalEmbeddingModel_from_pretrained(\"multimodalembedding@001\")\n image = https://cloud.google.com/python/docs/reference/vertexai/latest/vertexai.preview.generative_models.Image.html.https://cloud.google.com/python/docs/reference/vertexai/latest/vertexai.preview.generative_models.Image.html#vertexai_preview_generative_models_Image_load_from_file(\n \"gs://cloud-samples-data/vertex-ai/llm/prompts/landmark1.png\"\n )\n\n embeddings = model.https://cloud.google.com/python/docs/reference/vertexai/latest/vertexai.preview.vision_models.MultiModalEmbeddingModel.html#vertexai_preview_vision_models_MultiModalEmbeddingModel_get_embeddings(\n image=image,\n contextual_text=\"Colosseum\",\n dimension=1408,\n )\n print(f\"Image Embedding: {embeddings.image_embedding}\")\n print(f\"Text Embedding: {embeddings.text_embedding}\")\n # Example response:\n # Image Embedding: [-0.0123147098, 0.0727171078, ...]\n # Text Embedding: [0.00230263756, 0.0278981831, ...]\n\nWhat's next\n-----------\n\n\nTo search and filter code samples for other Google Cloud products, see the\n[Google Cloud sample browser](/docs/samples?product=generativeaionvertexai)."]]