L'API Multimodal Embeddings genera vettori in base all'input che fornisci, che può includere una combinazione di dati di immagini, testo e video. I vettori di incorporamento possono quindi essere utilizzati per attività successive come la classificazione delle immagini o la moderazione dei contenuti video.
Per ulteriori informazioni concettuali, consulta Incorporamenti multimodali.
Modelli supportati:
Modello | Codice |
---|---|
Incorporamenti per multimodale | multimodalembedding@001 |
Sintassi di esempio
Sintassi per inviare una richiesta API di embedding multimodali.
curl
curl -X POST \ -H "Authorization: Bearer $(gcloud auth print-access-token)" \ -H "Content-Type: application/json" \ https://${LOCATION}-aiplatform.googleapis.com/v1/projects/${PROJECT_ID}/locations/${LOCATION}/publishers/google/models/${MODEL_ID}:predict \ -d '{ "instances": [ ... ], }'
Python
from vertexai.vision_models import MultiModalEmbeddingModel model = MultiModalEmbeddingModel.from_pretrained("multimodalembedding") model.get_embeddings(...)
Elenco dei parametri
Per informazioni dettagliate sull'implementazione, consulta gli esempi.
Corpo della richiesta
{
"instances": [
{
"text": string,
"image": {
// Union field can be only one of the following:
"bytesBase64Encoded": string,
"gcsUri": string,
// End of list of possible types for union field.
"mimeType": string
},
"video": {
// Union field can be only one of the following:
"bytesBase64Encoded": string,
"gcsUri": string,
// End of list of possible types for union field.
"videoSegmentConfig": {
"startOffsetSec": integer,
"endOffsetSec": integer,
"intervalSec": integer
}
},
"parameters": {
"dimension": integer
}
}
]
}
Parametri | |
---|---|
|
(Facoltativo) L'immagine per cui generare gli incorporamenti. |
|
(Facoltativo) Il testo per cui generare gli incorporamenti. |
|
(Facoltativo) Il segmento di video per cui generare incorporamenti. |
|
(Facoltativo) La dimensione dell'incorporamento,
inclusa nella risposta. Si applica solo all'input di testo e immagini. Valori
accettati: |
Immagine
Parametri | |
---|---|
|
(Facoltativo) Byte dell'immagine codificati in una stringa base64. Deve essere uno tra |
|
Facoltativo. Il percorso Cloud Storage dell'immagine da incorporare. |
|
Facoltativo. Il tipo MIME del contenuto dell'immagine. Valori supportati: |
Video
Parametri | |
---|---|
|
(Facoltativo) Byte video codificati in una stringa base64. |
|
(Facoltativo) La posizione Cloud Storage del video su cui eseguire l'incorporamento. |
|
(Facoltativo) La configurazione del segmento video. |
VideoSegmentConfig
Parametri | |
---|---|
|
(Facoltativo) L'offset iniziale del segmento video in secondi. Se non specificato, viene calcolato con |
|
(Facoltativo) L'offset finale del segmento video in secondi. Se non specificato, viene calcolato con |
|
Facoltativo. L'intervallo del video in cui verrà generato l'incorporamento. Il valore minimo per |
Corpo della risposta
{
"predictions": [
{
"textEmbedding": [
float,
// array of 128, 256, 512, or 1408 float values
float
],
"imageEmbedding": [
float,
// array of 128, 256, 512, or 1408 float values
float
],
"videoEmbeddings": [
{
"startOffsetSec": integer,
"endOffsetSec": integer,
"embedding": [
float,
// array of 1408 float values
float
]
}
]
}
],
"deployedModelId": string
}
Elemento di risposta | Descrizione |
---|---|
imageEmbedding |
Elenco di numeri in virgola mobile di 128, 256, 512 o 1408 dimensioni. |
textEmbedding |
Elenco di numeri in virgola mobile di 128, 256, 512 o 1408 dimensioni. |
videoEmbeddings |
Elenco di numeri in virgola mobile della dimensione 1408 con l'ora di inizio e di fine (in secondi) del segmento di video per cui vengono generati gli incorporamenti. |
Esempi
Caso d'uso di base
Generare embedding dall'immagine
Utilizza il seguente esempio per generare incorporamenti per un'immagine.
REST
Prima di utilizzare i dati della richiesta, apporta le seguenti sostituzioni:
- LOCATION: la regione del progetto. Ad esempio,
us-central1
,europe-west2
oasia-northeast3
. Per un elenco delle regioni disponibili, consulta Località dell'AI generativa su Vertex AI. - PROJECT_ID: il tuo Google Cloud ID progetto.
- TEXT: il testo di destinazione per cui ottenere gli incorporamenti. Ad esempio,
a cat
. - B64_ENCODED_IMG: L'immagine di destinazione per cui ottenere gli incorporamenti. L'immagine deve essere specificata come stringa di byte con codifica base64.
Metodo HTTP e URL:
POST https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/publishers/google/models/multimodalembedding@001:predict
Corpo JSON della richiesta:
{ "instances": [ { "text": "TEXT", "image": { "bytesBase64Encoded": "B64_ENCODED_IMG" } } ] }
Per inviare la richiesta, scegli una di queste opzioni:
curl
Salva il corpo della richiesta in un file denominato request.json
,
ed esegui questo comando:
curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/publishers/google/models/multimodalembedding@001:predict"
PowerShell
Salva il corpo della richiesta in un file denominato request.json
,
ed esegui questo comando:
$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }
Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/publishers/google/models/multimodalembedding@001:predict" | Select-Object -Expand Content
{ "predictions": [ { "textEmbedding": [ 0.010477379, -0.00399621, 0.00576670747, [...] -0.00823613815, -0.0169572588, -0.00472954148 ], "imageEmbedding": [ 0.00262696808, -0.00198890246, 0.0152047109, -0.0103145819, [...] 0.0324628279, 0.0284924973, 0.011650892, -0.00452344026 ] } ], "deployedModelId": "DEPLOYED_MODEL_ID" }
Python
Per scoprire come installare o aggiornare l'SDK Vertex AI Python, consulta Installare l'SDK Vertex AI Python. Per saperne di più, consulta la documentazione di riferimento dell'API Python.
Node.js
Prima di provare questo esempio, segui le istruzioni di configurazione di Node.js nella guida rapida di Vertex AI per l'utilizzo delle librerie client. Per saperne di più, consulta la documentazione di riferimento dell'API Vertex AI Node.js.
Per eseguire l'autenticazione in Vertex AI, configura le Credenziali predefinite dell'applicazione. Per ulteriori informazioni, consulta Configura l'autenticazione per un ambiente di sviluppo locale.
Java
Prima di provare questo esempio, segui le istruzioni di configurazione di Java nella guida rapida di Vertex AI per l'utilizzo delle librerie client. Per saperne di più, consulta la documentazione di riferimento dell'API Vertex AI Java.
Per eseguire l'autenticazione in Vertex AI, configura le Credenziali predefinite dell'applicazione. Per ulteriori informazioni, consulta Configura l'autenticazione per un ambiente di sviluppo locale.
Go
Prima di provare questo esempio, segui le istruzioni di configurazione di Go nella guida rapida di Vertex AI per l'utilizzo delle librerie client. Per saperne di più, consulta la documentazione di riferimento dell'API Vertex AI Go.
Per eseguire l'autenticazione in Vertex AI, configura le Credenziali predefinite dell'applicazione. Per ulteriori informazioni, consulta Configura l'autenticazione per un ambiente di sviluppo locale.
Generare incorporamenti dal video
Utilizza il seguente esempio per generare incorporamenti per i contenuti video.
REST
L'esempio seguente utilizza un video che si trova in Cloud Storage. Puoi
anche utilizzare il campo video.bytesBase64Encoded
per fornire una
rappresentazione di stringa codificata in base64 del
video.
Prima di utilizzare i dati della richiesta, apporta le seguenti sostituzioni:
- LOCATION: la regione del progetto. Ad esempio,
us-central1
,europe-west2
oasia-northeast3
. Per un elenco delle regioni disponibili, consulta Località dell'AI generativa su Vertex AI. - PROJECT_ID: il tuo Google Cloud ID progetto.
- VIDEO_URI: l'URI Cloud Storage del video di destinazione per cui ottenere i contenuti incorporati.
Ad esempio,
gs://my-bucket/embeddings/supermarket-video.mp4
.Puoi anche fornire il video come stringa di byte codificata in base64:
[...] "video": { "bytesBase64Encoded": "B64_ENCODED_VIDEO" } [...]
videoSegmentConfig
(START_SECOND, END_SECOND, INTERVAL_SECONDS). Facoltativo. I segmenti video specifici (in secondi) per cui vengono generati gli incorporamenti.Ad esempio:
[...] "videoSegmentConfig": { "startOffsetSec": 10, "endOffsetSec": 60, "intervalSec": 10 } [...]
L'utilizzo di questa configurazione specifica i dati video da 10 a 60 secondi e genera incorporamenti per i seguenti intervalli video di 10 secondi: [10, 20), [20, 30), [30, 40), [40, 50), [50, 60). Questo intervallo video (
"intervalSec": 10
) rientra nella modalità di incorporamento video standard e all'utente viene addebitata la tariffa della modalità Standard.Se ometti
videoSegmentConfig
, il servizio utilizza i seguenti valori predefiniti:"videoSegmentConfig": { "startOffsetSec": 0, "endOffsetSec": 120, "intervalSec": 16 }
. Questo intervallo video ("intervalSec": 16
) rientra nella modalità di incorporamento video essenziale e all'utente viene addebitata la tariffa della modalità essenziale.
Metodo HTTP e URL:
POST https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/publishers/google/models/multimodalembedding@001:predict
Corpo JSON della richiesta:
{ "instances": [ { "video": { "gcsUri": "VIDEO_URI", "videoSegmentConfig": { "startOffsetSec": START_SECOND, "endOffsetSec": END_SECOND, "intervalSec": INTERVAL_SECONDS } } } ] }
Per inviare la richiesta, scegli una di queste opzioni:
curl
Salva il corpo della richiesta in un file denominato request.json
,
ed esegui questo comando:
curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/publishers/google/models/multimodalembedding@001:predict"
PowerShell
Salva il corpo della richiesta in un file denominato request.json
,
ed esegui questo comando:
$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }
Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/publishers/google/models/multimodalembedding@001:predict" | Select-Object -Expand Content
Risposta (video di 7 secondi, nessun videoSegmentConfig
specificato):
{ "predictions": [ { "videoEmbeddings": [ { "endOffsetSec": 7, "embedding": [ -0.0045467657, 0.0258095954, 0.0146885719, 0.00945400633, [...] -0.0023291884, -0.00493789, 0.00975185353, 0.0168156829 ], "startOffsetSec": 0 } ] } ], "deployedModelId": "DEPLOYED_MODEL_ID" }
Risposta (video di 59 secondi, con la seguente configurazione del segmento video: "videoSegmentConfig": { "startOffsetSec": 0, "endOffsetSec": 60, "intervalSec": 10 }
):
{ "predictions": [ { "videoEmbeddings": [ { "endOffsetSec": 10, "startOffsetSec": 0, "embedding": [ -0.00683252793, 0.0390476175, [...] 0.00657121744, 0.013023301 ] }, { "startOffsetSec": 10, "endOffsetSec": 20, "embedding": [ -0.0104404651, 0.0357737206, [...] 0.00509833824, 0.0131902946 ] }, { "startOffsetSec": 20, "embedding": [ -0.0113538112, 0.0305239167, [...] -0.00195809244, 0.00941874553 ], "endOffsetSec": 30 }, { "embedding": [ -0.00299320649, 0.0322436653, [...] -0.00993082579, 0.00968887936 ], "startOffsetSec": 30, "endOffsetSec": 40 }, { "endOffsetSec": 50, "startOffsetSec": 40, "embedding": [ -0.00591270532, 0.0368893594, [...] -0.00219071587, 0.0042470959 ] }, { "embedding": [ -0.00458270218, 0.0368121453, [...] -0.00317760976, 0.00595594104 ], "endOffsetSec": 59, "startOffsetSec": 50 } ] } ], "deployedModelId": "DEPLOYED_MODEL_ID" }
Python
Per scoprire come installare o aggiornare l'SDK Vertex AI Python, consulta Installare l'SDK Vertex AI Python. Per saperne di più, consulta la documentazione di riferimento dell'API Python.
Go
Prima di provare questo esempio, segui le istruzioni di configurazione di Go nella guida rapida di Vertex AI per l'utilizzo delle librerie client. Per saperne di più, consulta la documentazione di riferimento dell'API Vertex AI Go.
Per eseguire l'autenticazione in Vertex AI, configura le Credenziali predefinite dell'applicazione. Per ulteriori informazioni, consulta Configura l'autenticazione per un ambiente di sviluppo locale.
Caso d'uso avanzato
Utilizza il seguente esempio per ottenere gli incorporamenti per i contenuti video, di testo e delle immagini.
Per l'incorporamento dei video, puoi specificare il segmento video e la densità di incorporamento.
REST
L'esempio seguente utilizza dati di immagine, testo e video. Puoi utilizzare qualsiasi combinazione di questi tipi di dati nel corpo della richiesta.
Questo esempio utilizza un video archiviato in Cloud Storage. Puoi
anche utilizzare il campo video.bytesBase64Encoded
per fornire una
rappresentazione di stringa codificata in base64 del
video.
Prima di utilizzare i dati della richiesta, apporta le seguenti sostituzioni:
- LOCATION: la regione del progetto. Ad esempio,
us-central1
,europe-west2
oasia-northeast3
. Per un elenco delle regioni disponibili, consulta Località dell'AI generativa su Vertex AI. - PROJECT_ID: il tuo Google Cloud ID progetto.
- TEXT: il testo di destinazione per cui ottenere gli incorporamenti. Ad esempio,
a cat
. - IMAGE_URI: l'URI Cloud Storage dell'immagine di destinazione per cui ottenere gli incorporamenti.
Ad esempio,
gs://my-bucket/embeddings/supermarket-img.png
.Puoi anche fornire l'immagine come stringa di byte con codifica base64:
[...] "image": { "bytesBase64Encoded": "B64_ENCODED_IMAGE" } [...]
- VIDEO_URI: l'URI Cloud Storage del video di destinazione per cui ottenere i contenuti incorporati.
Ad esempio,
gs://my-bucket/embeddings/supermarket-video.mp4
.Puoi anche fornire il video come stringa di byte codificata in base64:
[...] "video": { "bytesBase64Encoded": "B64_ENCODED_VIDEO" } [...]
videoSegmentConfig
(START_SECOND, END_SECOND, INTERVAL_SECONDS). Facoltativo. I segmenti video specifici (in secondi) per cui vengono generati gli incorporamenti.Ad esempio:
[...] "videoSegmentConfig": { "startOffsetSec": 10, "endOffsetSec": 60, "intervalSec": 10 } [...]
L'utilizzo di questa configurazione specifica i dati video da 10 a 60 secondi e genera incorporamenti per i seguenti intervalli video di 10 secondi: [10, 20), [20, 30), [30, 40), [40, 50), [50, 60). Questo intervallo video (
"intervalSec": 10
) rientra nella modalità di incorporamento video standard e all'utente viene addebitata la tariffa della modalità Standard.Se ometti
videoSegmentConfig
, il servizio utilizza i seguenti valori predefiniti:"videoSegmentConfig": { "startOffsetSec": 0, "endOffsetSec": 120, "intervalSec": 16 }
. Questo intervallo video ("intervalSec": 16
) rientra nella modalità di incorporamento video essenziale e all'utente viene addebitata la tariffa della modalità essenziale.
Metodo HTTP e URL:
POST https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/publishers/google/models/multimodalembedding@001:predict
Corpo JSON della richiesta:
{ "instances": [ { "text": "TEXT", "image": { "gcsUri": "IMAGE_URI" }, "video": { "gcsUri": "VIDEO_URI", "videoSegmentConfig": { "startOffsetSec": START_SECOND, "endOffsetSec": END_SECOND, "intervalSec": INTERVAL_SECONDS } } } ] }
Per inviare la richiesta, scegli una di queste opzioni:
curl
Salva il corpo della richiesta in un file denominato request.json
,
ed esegui questo comando:
curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/publishers/google/models/multimodalembedding@001:predict"
PowerShell
Salva il corpo della richiesta in un file denominato request.json
,
ed esegui questo comando:
$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }
Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/publishers/google/models/multimodalembedding@001:predict" | Select-Object -Expand Content
{ "predictions": [ { "textEmbedding": [ 0.0105433334, -0.00302835181, 0.00656806398, 0.00603460241, [...] 0.00445805816, 0.0139605571, -0.00170318608, -0.00490092579 ], "videoEmbeddings": [ { "startOffsetSec": 0, "endOffsetSec": 7, "embedding": [ -0.00673126569, 0.0248149596, 0.0128901172, 0.0107588246, [...] -0.00180952181, -0.0054573305, 0.0117037306, 0.0169312079 ] } ], "imageEmbedding": [ -0.00728622358, 0.031021487, -0.00206603738, 0.0273937676, [...] -0.00204976718, 0.00321615417, 0.0121978866, 0.0193375275 ] } ], "deployedModelId": "DEPLOYED_MODEL_ID" }
Python
Per scoprire come installare o aggiornare l'SDK Vertex AI Python, consulta Installare l'SDK Vertex AI Python. Per saperne di più, consulta la documentazione di riferimento dell'API Python.
Go
Prima di provare questo esempio, segui le istruzioni di configurazione di Go nella guida rapida di Vertex AI per l'utilizzo delle librerie client. Per saperne di più, consulta la documentazione di riferimento dell'API Vertex AI Go.
Per eseguire l'autenticazione in Vertex AI, configura le Credenziali predefinite dell'applicazione. Per ulteriori informazioni, consulta Configura l'autenticazione per un ambiente di sviluppo locale.
Passaggi successivi
Per la documentazione dettagliata, consulta quanto segue: