Développer le contenu d'une image par outpainting selon un masque avec Imagen

Cet exemple montre comment utiliser le modèle Imagen pour modifier des images selon un masque. Spécifiez une zone de masque ciblée dans laquelle développer le contenu d'une image de base afin de l'adapter à un canevas plus grand ou de taille différente.

Exemple de code

Java

Avant d'essayer cet exemple, suivez les instructions de configuration pour Java décrites dans le guide de démarrage rapide de Vertex AI à l'aide des bibliothèques clientes. Pour en savoir plus, consultez la documentation de référence de l'API Vertex AI Java.

Pour vous authentifier auprès de Vertex AI, configurez le service Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.


import com.google.api.gax.rpc.ApiException;
import com.google.cloud.aiplatform.v1.EndpointName;
import com.google.cloud.aiplatform.v1.PredictResponse;
import com.google.cloud.aiplatform.v1.PredictionServiceClient;
import com.google.cloud.aiplatform.v1.PredictionServiceSettings;
import com.google.gson.Gson;
import com.google.protobuf.InvalidProtocolBufferException;
import com.google.protobuf.Value;
import com.google.protobuf.util.JsonFormat;
import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.util.Base64;
import java.util.Collections;
import java.util.HashMap;
import java.util.Map;

public class EditImageOutpaintingMaskSample {

  public static void main(String[] args) throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "my-project-id";
    String location = "us-central1";
    String inputPath = "/path/to/my-input.png";
    String maskPath = "/path/to/my-mask.png";
    String prompt = ""; // The optional text prompt describing what you want to see inserted.

    editImageOutpaintingMask(projectId, location, inputPath, maskPath, prompt);
  }

  // Edit an image using a mask file. Outpainting lets you expand the content of a base image to fit
  // a larger or differently sized mask canvas.
  public static PredictResponse editImageOutpaintingMask(
      String projectId, String location, String inputPath, String maskPath, String prompt)
      throws ApiException, IOException {
    final String endpoint = String.format("%s-aiplatform.googleapis.com:443", location);
    PredictionServiceSettings predictionServiceSettings =
        PredictionServiceSettings.newBuilder().setEndpoint(endpoint).build();

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests.
    try (PredictionServiceClient predictionServiceClient =
        PredictionServiceClient.create(predictionServiceSettings)) {

      final EndpointName endpointName =
          EndpointName.ofProjectLocationPublisherModelName(
              projectId, location, "google", "imagegeneration@006");

      // Encode image and mask to Base64
      String imageBase64 =
          Base64.getEncoder().encodeToString(Files.readAllBytes(Paths.get(inputPath)));
      String maskBase64 =
          Base64.getEncoder().encodeToString(Files.readAllBytes(Paths.get(maskPath)));

      // Create the image and image mask maps
      Map<String, String> imageMap = new HashMap<>();
      imageMap.put("bytesBase64Encoded", imageBase64);

      Map<String, String> maskMap = new HashMap<>();
      maskMap.put("bytesBase64Encoded", maskBase64);
      Map<String, Map> imageMaskMap = new HashMap<>();
      imageMaskMap.put("image", maskMap);

      Map<String, Object> instancesMap = new HashMap<>();
      instancesMap.put("prompt", prompt); // [ "prompt", "<my-prompt>" ]
      instancesMap.put(
          "image", imageMap); // [ "image", [ "bytesBase64Encoded", "iVBORw0KGgo...==" ] ]
      instancesMap.put(
          "mask",
          imageMaskMap); // [ "mask", [ "image", [ "bytesBase64Encoded", "iJKDF0KGpl...==" ] ] ]
      instancesMap.put("editMode", "outpainting"); // [ "editMode", "outpainting" ]
      Value instances = mapToValue(instancesMap);

      // Optional parameters
      Map<String, Object> paramsMap = new HashMap<>();
      paramsMap.put("sampleCount", 1);
      Value parameters = mapToValue(paramsMap);

      PredictResponse predictResponse =
          predictionServiceClient.predict(
              endpointName, Collections.singletonList(instances), parameters);

      for (Value prediction : predictResponse.getPredictionsList()) {
        Map<String, Value> fieldsMap = prediction.getStructValue().getFieldsMap();
        if (fieldsMap.containsKey("bytesBase64Encoded")) {
          String bytesBase64Encoded = fieldsMap.get("bytesBase64Encoded").getStringValue();
          Path tmpPath = Files.createTempFile("imagen-", ".png");
          Files.write(tmpPath, Base64.getDecoder().decode(bytesBase64Encoded));
          System.out.format("Image file written to: %s\n", tmpPath.toUri());
        }
      }
      return predictResponse;
    }
  }

  private static Value mapToValue(Map<String, Object> map) throws InvalidProtocolBufferException {
    Gson gson = new Gson();
    String json = gson.toJson(map);
    Value.Builder builder = Value.newBuilder();
    JsonFormat.parser().merge(json, builder);
    return builder.build();
  }
}

Node.js

Avant d'essayer cet exemple, suivez les instructions de configuration pour Node.js décrites dans le guide de démarrage rapide de Vertex AI à l'aide des bibliothèques clientes. Pour en savoir plus, consultez la documentation de référence de l'API Vertex AI Node.js.

Pour vous authentifier auprès de Vertex AI, configurez le service Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.

/**
 * TODO(developer): Update these variables before running the sample.
 */
const projectId = process.env.CAIP_PROJECT_ID;
const location = 'us-central1';
const inputFile = 'resources/roller_skaters.png';
const maskFile = 'resources/roller_skaters_mask.png';
const prompt = 'city with skyscrapers';

const aiplatform = require('@google-cloud/aiplatform');

// Imports the Google Cloud Prediction Service Client library
const {PredictionServiceClient} = aiplatform.v1;

// Import the helper module for converting arbitrary protobuf.Value objects
const {helpers} = aiplatform;

// Specifies the location of the api endpoint
const clientOptions = {
  apiEndpoint: `${location}-aiplatform.googleapis.com`,
};

// Instantiates a client
const predictionServiceClient = new PredictionServiceClient(clientOptions);

async function editImageOutpaintingMask() {
  const fs = require('fs');
  const util = require('util');
  // Configure the parent resource
  const endpoint = `projects/${projectId}/locations/${location}/publishers/google/models/imagegeneration@006`;

  const imageFile = fs.readFileSync(inputFile);
  // Convert the image data to a Buffer and base64 encode it.
  const encodedImage = Buffer.from(imageFile).toString('base64');

  const maskImageFile = fs.readFileSync(maskFile);
  // Convert the image mask data to a Buffer and base64 encode it.
  const encodedMask = Buffer.from(maskImageFile).toString('base64');

  const promptObj = {
    prompt: prompt, // The optional text prompt describing what you want to see inserted
    editMode: 'outpainting',
    image: {
      bytesBase64Encoded: encodedImage,
    },
    mask: {
      image: {
        bytesBase64Encoded: encodedMask,
      },
    },
  };
  const instanceValue = helpers.toValue(promptObj);
  const instances = [instanceValue];

  const parameter = {
    // Optional parameters
    seed: 100,
    // Controls the strength of the prompt
    // 0-9 (low strength), 10-20 (medium strength), 21+ (high strength)
    guidanceScale: 21,
    sampleCount: 1,
  };
  const parameters = helpers.toValue(parameter);

  const request = {
    endpoint,
    instances,
    parameters,
  };

  // Predict request
  const [response] = await predictionServiceClient.predict(request);
  const predictions = response.predictions;
  if (predictions.length === 0) {
    console.log(
      'No image was generated. Check the request parameters and prompt.'
    );
  } else {
    let i = 1;
    for (const prediction of predictions) {
      const buff = Buffer.from(
        prediction.structValue.fields.bytesBase64Encoded.stringValue,
        'base64'
      );
      // Write image content to the output file
      const writeFile = util.promisify(fs.writeFile);
      const filename = `output${i}.png`;
      await writeFile(filename, buff);
      console.log(`Saved image ${filename}`);
      i++;
    }
  }
}
await editImageOutpaintingMask();

Python

Avant d'essayer cet exemple, suivez les instructions de configuration pour Python décrites dans le guide de démarrage rapide de Vertex AI à l'aide des bibliothèques clientes. Pour en savoir plus, consultez la documentation de référence de l'API Vertex AI Python.

Pour vous authentifier auprès de Vertex AI, configurez le service Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.


import vertexai
from vertexai.preview.vision_models import Image, ImageGenerationModel

# TODO(developer): Update and un-comment below lines
# PROJECT_ID = "your-project-id"
# input_file = "input-image.png"
# mask_file = "mask-image.png"
# output_file = "output-image.png"
# prompt = "" # The optional text prompt describing what you want to see inserted.

vertexai.init(project=PROJECT_ID, location="us-central1")

model = ImageGenerationModel.from_pretrained("imagegeneration@006")
base_img = Image.load_from_file(location=input_file)
mask_img = Image.load_from_file(location=mask_file)

images = model.edit_image(
    base_image=base_img,
    mask=mask_img,
    prompt=prompt,
    edit_mode="outpainting",
)

images[0].save(location=output_file, include_generation_parameters=False)

# Optional. View the edited image in a notebook.
# images[0].show()

print(f"Created output image using {len(images[0]._image_bytes)} bytes")
# Example response:
# Created output image using 1234567 bytes

Étapes suivantes

Pour rechercher et filtrer des exemples de code pour d'autres produits Google Cloud, consultez l'explorateur d'exemples Google Cloud.