Compter les jetons pour Gemini

L'exemple de code montre comment utiliser l'API de modèles génératifs Vertex AI pour compter le nombre de jetons dans un prompt et générer du contenu à l'aide du modèle Gemini.

Exemple de code

Go

Avant d'essayer cet exemple, suivez les instructions de configuration pour Go décrites dans le guide de démarrage rapide de Vertex AI sur l'utilisation des bibliothèques clientes. Pour en savoir plus, consultez la documentation de référence de l'API Vertex AI pour Go.

Pour vous authentifier auprès de Vertex AI, configurez le service Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.

import (
	"context"
	"fmt"
	"io"
	"mime"
	"path/filepath"

	"cloud.google.com/go/vertexai/genai"
)

// countTokensMultimodal finds the number of tokens for a multimodal prompt (video+text), and writes to w. Then,
// it calls the model with the multimodal prompt and writes token counts from the response metadata to w.
//
// video is a Google Cloud Storage path starting with "gs://"
func countTokensMultimodal(w io.Writer, projectID, location, modelName string) error {
	// location := "us-central1"
	// modelName := "gemini-2.0-flash-001"
	prompt := "Provide a description of the video."
	video := "gs://cloud-samples-data/generative-ai/video/pixel8.mp4"

	ctx := context.Background()

	client, err := genai.NewClient(ctx, projectID, location)
	if err != nil {
		return fmt.Errorf("unable to create client: %w", err)
	}
	defer client.Close()

	model := client.GenerativeModel(modelName)

	part1 := genai.Text(prompt)

	// Given a video file URL, prepare video file as genai.Part
	part2 := genai.FileData{
		MIMEType: mime.TypeByExtension(filepath.Ext(video)),
		FileURI:  video,
	}

	// Finds the total number of tokens for the 2 parts (text, video) of the multimodal prompt,
	// before actually calling the model for inference.
	resp, err := model.CountTokens(ctx, part1, part2)
	if err != nil {
		return err
	}

	fmt.Fprintf(w, "Number of tokens for the multimodal video prompt: %d\n", resp.TotalTokens)

	res, err := model.GenerateContent(ctx, part1, part2)
	if err != nil {
		return fmt.Errorf("unable to generate contents: %w", err)
	}

	// The token counts are also provided in the model response metadata, after inference.
	fmt.Fprintln(w, "\nModel response")
	md := res.UsageMetadata
	fmt.Fprintf(w, "Prompt Token Count: %d\n", md.PromptTokenCount)
	fmt.Fprintf(w, "Candidates Token Count: %d\n", md.CandidatesTokenCount)
	fmt.Fprintf(w, "Total Token Count: %d\n", md.TotalTokenCount)

	return nil
}

Étape suivante

Pour rechercher et filtrer des exemples de code pour d'autres produits Google Cloud , consultez l'explorateur d'exemplesGoogle Cloud .