Generar texto desde un mensaje multimodal

En este ejemplo, se muestra cómo generar texto a partir de un prompt multimodal con el modelo de Gemini. El mensaje consta de tres imágenes y dos prompts de texto. El modelo genera una respuesta de texto que describe las imágenes y los prompts de texto.

Explora más

Para obtener documentación en la que se incluye esta muestra de código, consulta lo siguiente:

Muestra de código

C#

Antes de probar este ejemplo, sigue las instrucciones de configuración para C# incluidas en la guía de inicio rápido de Vertex AI sobre cómo usar bibliotecas cliente. Para obtener más información, consulta la documentación de referencia de la API de Vertex AI C#.

Para autenticarte en Vertex AI, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para un entorno de desarrollo local.


using Google.Api.Gax.Grpc;
using Google.Cloud.AIPlatform.V1;
using Google.Protobuf;
using System.Net.Http;
using System.Text;
using System.Threading.Tasks;

public class MultimodalMultiImage
{
    public async Task<string> GenerateContent(
        string projectId = "your-project-id",
        string location = "us-central1",
        string publisher = "google",
        string model = "gemini-1.5-flash-001"
    )
    {
        var predictionServiceClient = new PredictionServiceClientBuilder
        {
            Endpoint = $"{location}-aiplatform.googleapis.com"
        }.Build();

        ByteString colosseum = await ReadImageFileAsync(
            "https://storage.googleapis.com/cloud-samples-data/vertex-ai/llm/prompts/landmark1.png");

        ByteString forbiddenCity = await ReadImageFileAsync(
            "https://storage.googleapis.com/cloud-samples-data/vertex-ai/llm/prompts/landmark2.png");

        ByteString christRedeemer = await ReadImageFileAsync(
            "https://storage.googleapis.com/cloud-samples-data/vertex-ai/llm/prompts/landmark3.png");

        var generateContentRequest = new GenerateContentRequest
        {
            Model = $"projects/{projectId}/locations/{location}/publishers/{publisher}/models/{model}",
            Contents =
            {
                new Content
                {
                    Role = "USER",
                    Parts =
                    {
                        new Part { InlineData = new() { MimeType = "image/png", Data = colosseum }},
                        new Part { Text = "city: Rome, Landmark: the Colosseum" },
                        new Part { InlineData = new() { MimeType = "image/png", Data = forbiddenCity }},
                        new Part { Text = "city: Beijing, Landmark: Forbidden City"},
                        new Part { InlineData = new() { MimeType = "image/png", Data = christRedeemer }}
                    }
                }
            }
        };

        using PredictionServiceClient.StreamGenerateContentStream response = predictionServiceClient.StreamGenerateContent(generateContentRequest);

        StringBuilder fullText = new();

        AsyncResponseStream<GenerateContentResponse> responseStream = response.GetResponseStream();
        await foreach (GenerateContentResponse responseItem in responseStream)
        {
            fullText.Append(responseItem.Candidates[0].Content.Parts[0].Text);
        }
        return fullText.ToString();
    }

    private static async Task<ByteString> ReadImageFileAsync(string url)
    {
        using HttpClient client = new();
        using var response = await client.GetAsync(url);
        byte[] imageBytes = await response.Content.ReadAsByteArrayAsync();
        return ByteString.CopyFrom(imageBytes);
    }
}

Go

Antes de probar este ejemplo, sigue las instrucciones de configuración para Go incluidas en la guía de inicio rápido de Vertex AI sobre cómo usar bibliotecas cliente. Para obtener más información, consulta la documentación de referencia de la API de Vertex AI Go.

Para autenticarte en Vertex AI, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para un entorno de desarrollo local.

import (
	"context"
	"fmt"
	"io"
	"mime"
	"path/filepath"

	"cloud.google.com/go/vertexai/genai"
)

// generateMultimodalContent shows how to generate a text from a multimodal prompt using the Gemini model,
// writing the response to the provided io.Writer.
func generateMultimodalContent(w io.Writer, projectID, location, modelName string) error {
	// location := "us-central1"
	// modelName := "gemini-1.5-flash-001"
	ctx := context.Background()

	// create prompt image parts
	colosseum := genai.FileData{
		MIMEType: mime.TypeByExtension(filepath.Ext("landmark1.png")),
		FileURI:  "gs://cloud-samples-data/vertex-ai/llm/prompts/landmark1.png",
	}
	forbiddenCity := genai.FileData{
		MIMEType: mime.TypeByExtension(filepath.Ext("landmark2.png")),
		FileURI:  "gs://cloud-samples-data/vertex-ai/llm/prompts/landmark2.png",
	}
	newImage := genai.FileData{
		MIMEType: mime.TypeByExtension(filepath.Ext("landmark3.png")),
		FileURI:  "gs://cloud-samples-data/vertex-ai/llm/prompts/landmark3.png",
	}
	// create a multimodal (multipart) prompt
	prompt := []genai.Part{
		colosseum,
		genai.Text("city: Rome, Landmark: the Colosseum "),
		forbiddenCity,
		genai.Text("city: Beijing, Landmark: the Forbidden City "),
		newImage,
	}

	// generate the response
	client, err := genai.NewClient(ctx, projectID, location)
	if err != nil {
		return fmt.Errorf("unable to create client: %w", err)
	}
	defer client.Close()

	model := client.GenerativeModel(modelName)

	res, err := model.GenerateContent(ctx, prompt...)
	if err != nil {
		return fmt.Errorf("unable to generate contents: %w", err)
	}

	fmt.Fprintf(w, "generated response: %s\n", res.Candidates[0].Content.Parts[0])
	return nil
}

Java

Antes de probar este ejemplo, sigue las instrucciones de configuración para Java incluidas en la guía de inicio rápido de Vertex AI sobre cómo usar bibliotecas cliente. Para obtener más información, consulta la documentación de referencia de la API de Vertex AI Java.

Para autenticarte en Vertex AI, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para un entorno de desarrollo local.

import com.google.cloud.vertexai.VertexAI;
import com.google.cloud.vertexai.api.Content;
import com.google.cloud.vertexai.api.GenerateContentResponse;
import com.google.cloud.vertexai.generativeai.ContentMaker;
import com.google.cloud.vertexai.generativeai.GenerativeModel;
import com.google.cloud.vertexai.generativeai.PartMaker;
import com.google.cloud.vertexai.generativeai.ResponseHandler;
import java.io.ByteArrayOutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.net.HttpURLConnection;
import java.net.URL;

public class MultimodalMultiImage {

  public static void main(String[] args) throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "your-google-cloud-project-id";
    String location = "us-central1";
    String modelName = "gemini-1.5-flash-001";

    multimodalMultiImage(projectId, location, modelName);
  }

  // Generates content from multiple input images.
  public static void multimodalMultiImage(String projectId, String location, String modelName)
      throws IOException {
    // Initialize client that will be used to send requests. This client only needs
    // to be created once, and can be reused for multiple requests.
    try (VertexAI vertexAI = new VertexAI(projectId, location)) {
      GenerativeModel model = new GenerativeModel(modelName, vertexAI);

      Content content = ContentMaker.fromMultiModalData(
          PartMaker.fromMimeTypeAndData("image/png", readImageFile(
              "https://storage.googleapis.com/cloud-samples-data/vertex-ai/llm/prompts/landmark1.png")),
          "city: Rome, Landmark: the Colosseum",
          PartMaker.fromMimeTypeAndData("image/png", readImageFile(
              "https://storage.googleapis.com/cloud-samples-data/vertex-ai/llm/prompts/landmark2.png")),
          "city: Beijing, Landmark: Forbidden City",
          PartMaker.fromMimeTypeAndData("image/png", readImageFile(
              "https://storage.googleapis.com/cloud-samples-data/vertex-ai/llm/prompts/landmark3.png"))
      );

      GenerateContentResponse response = model.generateContent(content);

      String output = ResponseHandler.getText(response);
      System.out.println(output);
    }
  }

  // Reads the image data from the given URL.
  public static byte[] readImageFile(String url) throws IOException {
    URL urlObj = new URL(url);
    HttpURLConnection connection = (HttpURLConnection) urlObj.openConnection();
    connection.setRequestMethod("GET");

    int responseCode = connection.getResponseCode();

    if (responseCode == HttpURLConnection.HTTP_OK) {
      InputStream inputStream = connection.getInputStream();
      ByteArrayOutputStream outputStream = new ByteArrayOutputStream();

      byte[] buffer = new byte[1024];
      int bytesRead;
      while ((bytesRead = inputStream.read(buffer)) != -1) {
        outputStream.write(buffer, 0, bytesRead);
      }

      return outputStream.toByteArray();
    } else {
      throw new RuntimeException("Error fetching file: " + responseCode);
    }
  }
}

Node.js

Antes de probar este ejemplo, sigue las instrucciones de configuración para Node.js incluidas en la guía de inicio rápido de Vertex AI sobre cómo usar bibliotecas cliente. Para obtener más información, consulta la documentación de referencia de la API de Vertex AI Node.js.

Para autenticarte en Vertex AI, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para un entorno de desarrollo local.

const {VertexAI} = require('@google-cloud/vertexai');
const axios = require('axios');

async function getBase64(url) {
  const image = await axios.get(url, {responseType: 'arraybuffer'});
  return Buffer.from(image.data).toString('base64');
}

/**
 * TODO(developer): Update these variables before running the sample.
 */
async function sendMultiModalPromptWithImage(
  projectId = 'PROJECT_ID',
  location = 'us-central1',
  model = 'gemini-1.5-flash-001'
) {
  // For images, the SDK supports base64 strings
  const landmarkImage1 = await getBase64(
    'https://storage.googleapis.com/cloud-samples-data/vertex-ai/llm/prompts/landmark1.png'
  );
  const landmarkImage2 = await getBase64(
    'https://storage.googleapis.com/cloud-samples-data/vertex-ai/llm/prompts/landmark2.png'
  );
  const landmarkImage3 = await getBase64(
    'https://storage.googleapis.com/cloud-samples-data/vertex-ai/llm/prompts/landmark3.png'
  );

  // Initialize Vertex with your Cloud project and location
  const vertexAI = new VertexAI({project: projectId, location: location});

  const generativeVisionModel = vertexAI.getGenerativeModel({
    model: model,
  });

  // Pass multimodal prompt
  const request = {
    contents: [
      {
        role: 'user',
        parts: [
          {
            inlineData: {
              data: landmarkImage1,
              mimeType: 'image/png',
            },
          },
          {
            text: 'city: Rome, Landmark: the Colosseum',
          },

          {
            inlineData: {
              data: landmarkImage2,
              mimeType: 'image/png',
            },
          },
          {
            text: 'city: Beijing, Landmark: Forbidden City',
          },
          {
            inlineData: {
              data: landmarkImage3,
              mimeType: 'image/png',
            },
          },
        ],
      },
    ],
  };

  // Create the response
  const response = await generativeVisionModel.generateContent(request);
  // Wait for the response to complete
  const aggregatedResponse = await response.response;
  // Select the text from the response
  const fullTextResponse =
    aggregatedResponse.candidates[0].content.parts[0].text;

  console.log(fullTextResponse);
}

Python

Antes de probar este ejemplo, sigue las instrucciones de configuración para Python incluidas en la guía de inicio rápido de Vertex AI sobre cómo usar bibliotecas cliente. Para obtener más información, consulta la documentación de referencia de la API de Vertex AI Python.

Para autenticarte en Vertex AI, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para un entorno de desarrollo local.

import vertexai

from vertexai.generative_models import GenerativeModel, Part

# TODO(developer): Update and un-comment below line
# PROJECT_ID = "your-project-id"
vertexai.init(project=PROJECT_ID, location="us-central1")

# Load images from Cloud Storage URI
image_file1 = Part.from_uri(
    "gs://cloud-samples-data/vertex-ai/llm/prompts/landmark1.png",
    mime_type="image/png",
)
image_file2 = Part.from_uri(
    "gs://cloud-samples-data/vertex-ai/llm/prompts/landmark2.png",
    mime_type="image/png",
)
image_file3 = Part.from_uri(
    "gs://cloud-samples-data/vertex-ai/llm/prompts/landmark3.png",
    mime_type="image/png",
)

model = GenerativeModel("gemini-1.5-flash-002")
response = model.generate_content(
    [
        image_file1,
        "city: Rome, Landmark: the Colosseum",
        image_file2,
        "city: Beijing, Landmark: Forbidden City",
        image_file3,
    ]
)
print(response.text)
# Example response:
# city: Rio de Janeiro, Landmark: Christ the Redeemer

¿Qué sigue?

Para buscar y filtrar muestras de código para otros productos de Google Cloud , consulta el navegador de muestras deGoogle Cloud .