Generare testo da un'immagine

Invia un prompt al modello Gemini con un'immagine e un prompt di testo e restituisce il testo generato.

Per saperne di più

Per la documentazione dettagliata che include questo esempio di codice, consulta quanto segue:

Esempio di codice

Go

Prima di provare questo esempio, segui le istruzioni per la configurazione di Go nel Guida rapida di Vertex AI con librerie client. Per ulteriori informazioni, consulta la documentazione di riferimento dell'API Go di Vertex AI.

Per autenticarti in Vertex AI, configura le credenziali predefinite dell'applicazione. Per ulteriori informazioni, vedi Configura l'autenticazione per un ambiente di sviluppo locale.

import (
	"context"
	"errors"
	"fmt"
	"io"
	"mime"
	"path/filepath"

	"cloud.google.com/go/vertexai/genai"
)

// generateMultimodalContent generates a response into w, based upon the prompt and image.
func generateMultimodalContent(w io.Writer, projectID, location, modelName string) error {
	// location := "us-central1"
	// modelName := "gemini-1.5-flash-001"
	ctx := context.Background()

	client, err := genai.NewClient(ctx, projectID, location)
	if err != nil {
		return fmt.Errorf("unable to create client: %v", err)
	}
	defer client.Close()

	model := client.GenerativeModel(modelName)
	model.SetTemperature(0.4)

	// Given an image file URL, prepare image file as genai.Part
	img := genai.FileData{
		MIMEType: mime.TypeByExtension(filepath.Ext("scones.jpg")),
		FileURI:  "gs://generativeai-downloads/images/scones.jpg",
	}

	res, err := model.GenerateContent(ctx, img, genai.Text("Describe what is in this picture"))
	if err != nil {
		return fmt.Errorf("unable to generate contents: %v", err)
	}

	if len(res.Candidates) == 0 ||
		len(res.Candidates[0].Content.Parts) == 0 {
		return errors.New("empty response from model")
	}

	fmt.Fprintf(w, "generated response: %s\n", res.Candidates[0].Content.Parts[0])
	return nil
}

Java

Prima di provare questo esempio, segui le istruzioni per la configurazione di Java nel Guida rapida di Vertex AI con librerie client. Per ulteriori informazioni, consulta API Java Vertex AI documentazione di riferimento.

Per eseguire l'autenticazione su Vertex AI, configura Credenziali predefinite dell'applicazione. Per ulteriori informazioni, vedi Configura l'autenticazione per un ambiente di sviluppo locale.

import com.google.cloud.vertexai.VertexAI;
import com.google.cloud.vertexai.api.GenerateContentResponse;
import com.google.cloud.vertexai.generativeai.ContentMaker;
import com.google.cloud.vertexai.generativeai.GenerativeModel;
import com.google.cloud.vertexai.generativeai.PartMaker;
import com.google.cloud.vertexai.generativeai.ResponseHandler;
import java.util.Base64;

public class MultimodalQuery {

  public static void main(String[] args) throws Exception {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "your-google-cloud-project-id";
    String location = "us-central1";
    String modelName = "gemini-1.5-flash-001";
    String dataImageBase64 = "your-base64-encoded-image";

    String output = multimodalQuery(projectId, location, modelName, dataImageBase64);
    System.out.println(output);
  }


  // Ask the model to recognise the brand associated with the logo image.
  public static String multimodalQuery(String projectId, String location, String modelName,
      String dataImageBase64) throws Exception {
    // Initialize client that will be used to send requests. This client only needs
    // to be created once, and can be reused for multiple requests.
    try (VertexAI vertexAI = new VertexAI(projectId, location)) {
      String output;
      byte[] imageBytes = Base64.getDecoder().decode(dataImageBase64);

      GenerativeModel model = new GenerativeModel(modelName, vertexAI);
      GenerateContentResponse response = model.generateContent(
          ContentMaker.fromMultiModalData(
              "What is this image?",
              PartMaker.fromMimeTypeAndData("image/png", imageBytes)
          ));

      output = ResponseHandler.getText(response);
      return output;
    }
  }
}

Python

Prima di provare questo esempio, segui le istruzioni per la configurazione di Python nel Guida rapida di Vertex AI con librerie client. Per ulteriori informazioni, consulta la documentazione di riferimento dell'API Python di Vertex AI.

Per autenticarti in Vertex AI, configura le credenziali predefinite dell'applicazione. Per ulteriori informazioni, vedi Configura l'autenticazione per un ambiente di sviluppo locale.

import vertexai

from vertexai.generative_models import GenerativeModel, Part

# TODO(developer): Update and un-comment below line
# PROJECT_ID = "your-project-id"
vertexai.init(project=PROJECT_ID, location="us-central1")

model = GenerativeModel("gemini-1.5-flash-002")

image_file = Part.from_uri(
    "gs://cloud-samples-data/generative-ai/image/scones.jpg", "image/jpeg"
)

# Query the model
response = model.generate_content([image_file, "what is this image?"])
print(response.text)
# Example response:
# That's a lovely overhead flatlay photograph of blueberry scones.
# The image features:
# * **Several blueberry scones:** These are the main focus,
# arranged on parchment paper with some blueberry juice stains.
# ...

Passaggi successivi

Per cercare ed eseguire filtri sugli esempi di codice per altri prodotti Google Cloud, consulta il browser di esempi di Google Cloud.