Menyatukan Gemini ke penyimpanan data Vertex AI Search

Gunakan ini untuk melandasi output Gemini ke data Anda sendiri yang disimpan di penyimpanan data Vertex AI Search

Mempelajari lebih lanjut

Untuk dokumentasi mendetail yang menyertakan contoh kode ini, lihat artikel berikut:

Contoh kode

C#

Sebelum mencoba contoh ini, ikuti petunjuk penyiapan C# di Panduan memulai Vertex AI menggunakan library klien. Untuk mengetahui informasi selengkapnya, lihat Dokumentasi referensi API C# Vertex AI.

Untuk melakukan autentikasi ke Vertex AI, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, baca Menyiapkan autentikasi untuk lingkungan pengembangan lokal.


using Google.Cloud.AIPlatform.V1;
using System;
using System.Threading.Tasks;

public class GroundingVertexAiSearchSample
{
    public async Task<string> GenerateTextWithVertexAiSearch(
        string projectId = "your-project-id",
        string location = "us-central1",
        string publisher = "google",
        string model = "gemini-1.5-flash-001",
        string dataStoreLocation = "global",
        string dataStoreId = "your-datastore-id")
    {
        var predictionServiceClient = new PredictionServiceClientBuilder
        {
            Endpoint = $"{location}-aiplatform.googleapis.com"
        }.Build();

        var generateContentRequest = new GenerateContentRequest
        {
            Model = $"projects/{projectId}/locations/{location}/publishers/{publisher}/models/{model}",
            GenerationConfig = new GenerationConfig
            {
                Temperature = 0.0f
            },
            Contents =
            {
                new Content
                {
                    Role = "USER",
                    Parts = { new Part { Text = "How do I make an appointment to renew my driver's license?" } }
                }
            },
            Tools =
            {
                new Tool
                {
                    Retrieval = new Retrieval
                    {
                        VertexAiSearch = new VertexAISearch
                        {
                            Datastore = $"projects/{projectId}/locations/{dataStoreLocation}/collections/default_collection/dataStores/{dataStoreId}"
                        }
                    }
                }
            }
        };

        GenerateContentResponse response = await predictionServiceClient.GenerateContentAsync(generateContentRequest);

        string responseText = response.Candidates[0].Content.Parts[0].Text;
        Console.WriteLine(responseText);

        return responseText;
    }
}

Python

Sebelum mencoba contoh ini, ikuti petunjuk penyiapan Python di Panduan memulai Vertex AI menggunakan library klien. Untuk mengetahui informasi selengkapnya, lihat Dokumentasi referensi API Python Vertex AI.

Untuk melakukan autentikasi ke Vertex AI, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, baca Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

import vertexai

from vertexai.preview.generative_models import (
    GenerationConfig,
    GenerativeModel,
    Tool,
    grounding,
)

# TODO(developer): Update and un-comment below lines
# PROJECT_ID = "your-project-id"
# data_store_id = "your-data-store-id"

vertexai.init(project=PROJECT_ID, location="us-central1")

model = GenerativeModel("gemini-1.5-flash-001")

tool = Tool.from_retrieval(
    grounding.Retrieval(
        grounding.VertexAISearch(
            datastore=data_store_id,
            project=PROJECT_ID,
            location="global",
        )
    )
)

prompt = "How do I make an appointment to renew my driver's license?"
response = model.generate_content(
    prompt,
    tools=[tool],
    generation_config=GenerationConfig(
        temperature=0.0,
    ),
)

print(response.text)

Langkah berikutnya

Untuk menelusuri dan memfilter contoh kode untuk produk Google Cloud lainnya, lihat Google Cloud browser contoh.