Générer du texte à l'aide d'un modèle d'IA générative

Cet exemple de code montre comment utiliser un modèle d'IA générative pour générer du contenu pour une entrée de texte donnée.

En savoir plus

Pour obtenir une documentation détaillée incluant cet exemple de code, consultez les pages suivantes :

Exemple de code

C++

Avant d'essayer cet exemple, suivez les instructions de configuration pour C++ décrites dans le guide de démarrage rapide de Vertex AI à l'aide des bibliothèques clientes. Pour en savoir plus, consultez la documentation de référence de l'API Vertex AI C++.

Pour vous authentifier auprès de Vertex AI, configurez le service Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.

namespace vertex_ai = ::google::cloud::aiplatform_v1;
namespace vertex_ai_proto = ::google::cloud::aiplatform::v1;
[](std::string const& project_id, std::string const& location_id,
   std::string const& model, std::vector<std::string> const& content) {
  google::cloud::Location location(project_id, location_id);
  auto client = vertex_ai::PredictionServiceClient(
      vertex_ai::MakePredictionServiceConnection(location.location_id()));

  std::vector<vertex_ai_proto::Content> contents;
  for (auto const& c : content) {
    vertex_ai_proto::Content content;
    content.set_role("user");
    content.add_parts()->set_text(c);
    contents.push_back(std::move(content));
  }
  auto response = client.GenerateContent(
      location.FullName() + "/publishers/google/models/" + model, contents);
  if (!response) throw std::move(response).status();

  for (auto const& candidate : response->candidates()) {
    for (auto const& p : candidate.content().parts()) {
      std::cout << p.text() << "\n";
    }
  }
}

C#

Avant d'essayer cet exemple, suivez les instructions de configuration pour C# décrites dans le guide de démarrage rapide de Vertex AI à l'aide des bibliothèques clientes. Pour en savoir plus, consultez la documentation de référence de l'API Vertex AI C#.

Pour vous authentifier auprès de Vertex AI, configurez le service Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.


using Google.Cloud.AIPlatform.V1;
using System;
using System.Threading.Tasks;

public class TextInputSample
{
    public async Task<string> TextInput(
        string projectId = "your-project-id",
        string location = "us-central1",
        string publisher = "google",
        string model = "gemini-1.5-flash-001")
    {

        var predictionServiceClient = new PredictionServiceClientBuilder
        {
            Endpoint = $"{location}-aiplatform.googleapis.com"
        }.Build();
        string prompt = @"What's a good name for a flower shop that specializes in selling bouquets of dried flowers?";

        var generateContentRequest = new GenerateContentRequest
        {
            Model = $"projects/{projectId}/locations/{location}/publishers/{publisher}/models/{model}",
            Contents =
            {
                new Content
                {
                    Role = "USER",
                    Parts =
                    {
                        new Part { Text = prompt }
                    }
                }
            }
        };

        GenerateContentResponse response = await predictionServiceClient.GenerateContentAsync(generateContentRequest);

        string responseText = response.Candidates[0].Content.Parts[0].Text;
        Console.WriteLine(responseText);

        return responseText;
    }
}

Go

Avant d'essayer cet exemple, suivez les instructions de configuration pour Go décrites dans le guide de démarrage rapide de Vertex AI à l'aide des bibliothèques clientes. Pour en savoir plus, consultez la documentation de référence de l'API Vertex AI Go.

Pour vous authentifier auprès de Vertex AI, configurez le service Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.

import (
	"context"
	"encoding/json"
	"fmt"
	"io"

	"cloud.google.com/go/vertexai/genai"
)

func generateContentFromText(w io.Writer, projectID string) error {
	location := "us-central1"
	modelName := "gemini-1.5-flash-001"

	ctx := context.Background()
	client, err := genai.NewClient(ctx, projectID, location)
	if err != nil {
		return fmt.Errorf("error creating client: %w", err)
	}
	gemini := client.GenerativeModel(modelName)
	prompt := genai.Text(
		"What's a good name for a flower shop that specializes in selling bouquets of dried flowers?")

	resp, err := gemini.GenerateContent(ctx, prompt)
	if err != nil {
		return fmt.Errorf("error generating content: %w", err)
	}
	// See the JSON response in
	// https://pkg.go.dev/cloud.google.com/go/vertexai/genai#GenerateContentResponse.
	rb, err := json.MarshalIndent(resp, "", "  ")
	if err != nil {
		return fmt.Errorf("json.MarshalIndent: %w", err)
	}
	fmt.Fprintln(w, string(rb))
	return nil
}

Java

Avant d'essayer cet exemple, suivez les instructions de configuration pour Java décrites dans le guide de démarrage rapide de Vertex AI à l'aide des bibliothèques clientes. Pour en savoir plus, consultez la documentation de référence de l'API Vertex AI Java.

Pour vous authentifier auprès de Vertex AI, configurez le service Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.

import com.google.cloud.vertexai.VertexAI;
import com.google.cloud.vertexai.api.GenerateContentResponse;
import com.google.cloud.vertexai.generativeai.GenerativeModel;
import com.google.cloud.vertexai.generativeai.ResponseHandler;
import java.io.IOException;

public class TextInput {

  public static void main(String[] args) throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "your-google-cloud-project-id";
    String location = "us-central1";
    String modelName = "gemini-1.5-flash-001";
    String textPrompt =
        "What's a good name for a flower shop that specializes in selling bouquets of"
            + " dried flowers?";

    String output = textInput(projectId, location, modelName, textPrompt);
    System.out.println(output);
  }

  // Passes the provided text input to the Gemini model and returns the text-only response.
  // For the specified textPrompt, the model returns a list of possible store names.
  public static String textInput(
      String projectId, String location, String modelName, String textPrompt) throws IOException {
    // Initialize client that will be used to send requests. This client only needs
    // to be created once, and can be reused for multiple requests.
    try (VertexAI vertexAI = new VertexAI(projectId, location)) {
      GenerativeModel model = new GenerativeModel(modelName, vertexAI);

      GenerateContentResponse response = model.generateContent(textPrompt);
      String output = ResponseHandler.getText(response);
      return output;
    }
  }
}

Node.js

Avant d'essayer cet exemple, suivez les instructions de configuration pour Node.js décrites dans le guide de démarrage rapide de Vertex AI à l'aide des bibliothèques clientes. Pour en savoir plus, consultez la documentation de référence de l'API Vertex AI Node.js.

Pour vous authentifier auprès de Vertex AI, configurez le service Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.

const {VertexAI} = require('@google-cloud/vertexai');

/**
 * TODO(developer): Update these variables before running the sample.
 */
async function generate_from_text_input(projectId = 'PROJECT_ID') {
  const vertexAI = new VertexAI({project: projectId, location: 'us-central1'});

  const generativeModel = vertexAI.getGenerativeModel({
    model: 'gemini-1.5-flash-001',
  });

  const prompt =
    "What's a good name for a flower shop that specializes in selling bouquets of dried flowers?";

  const resp = await generativeModel.generateContent(prompt);
  const contentResponse = await resp.response;
  console.log(JSON.stringify(contentResponse));
}

Python

Avant d'essayer cet exemple, suivez les instructions de configuration pour Python décrites dans le guide de démarrage rapide de Vertex AI à l'aide des bibliothèques clientes. Pour en savoir plus, consultez la documentation de référence de l'API Vertex AI Python.

Pour vous authentifier auprès de Vertex AI, configurez le service Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.

import vertexai
from vertexai.generative_models import GenerativeModel

# TODO(developer): Update & uncomment line below
# PROJECT_ID = "your-project-id"
vertexai.init(project=PROJECT_ID, location="us-central1")

model = GenerativeModel("gemini-1.5-flash-002")

response = model.generate_content(
    "What's a good name for a flower shop that specializes in selling bouquets of dried flowers?"
)

print(response.text)

Étapes suivantes

Pour rechercher et filtrer des exemples de code pour d'autres produits Google Cloud, consultez l'explorateur d'exemples Google Cloud.