Chiamate di funzione con il modello AI Gemini

L'esempio di codice mostra come utilizzare i modelli generativi di Vertex AI per effettuare chiamate di funzione.

Per saperne di più

Per la documentazione dettagliata che include questo esempio di codice, consulta quanto segue:

Esempio di codice

Python

Prima di provare questo esempio, segui le istruzioni per la configurazione di Python nel Guida rapida di Vertex AI con librerie client. Per ulteriori informazioni, consulta la documentazione di riferimento dell'API Python di Vertex AI.

Per eseguire l'autenticazione su Vertex AI, configura Credenziali predefinite dell'applicazione. Per ulteriori informazioni, vedi Configura l'autenticazione per un ambiente di sviluppo locale.

import vertexai

from vertexai.preview.generative_models import (
    FunctionDeclaration,
    GenerativeModel,
    Tool,
    ToolConfig,
)

# TODO(developer): Update & uncomment below line
# PROJECT_ID = "your-project-id"

# Initialize Vertex AI
vertexai.init(project=PROJECT_ID, location="us-central1")

# Specify a function declaration and parameters for an API request
get_product_sku_func = FunctionDeclaration(
    name="get_product_sku",
    description="Get the available inventory for a Google products, e.g: Pixel phones, Pixel Watches, Google Home etc",
    # Function parameters are specified in JSON schema format
    parameters={
        "type": "object",
        "properties": {
            "product_name": {"type": "string", "description": "Product name"}
        },
    },
)

# Specify another function declaration and parameters for an API request
get_store_location_func = FunctionDeclaration(
    name="get_store_location",
    description="Get the location of the closest store",
    # Function parameters are specified in JSON schema format
    parameters={
        "type": "object",
        "properties": {"location": {"type": "string", "description": "Location"}},
    },
)

# Define a tool that includes the above functions
retail_tool = Tool(
    function_declarations=[
        get_product_sku_func,
        get_store_location_func,
    ],
)

# Define a tool config for the above functions
retail_tool_config = ToolConfig(
    function_calling_config=ToolConfig.FunctionCallingConfig(
        # ANY mode forces the model to predict a function call
        mode=ToolConfig.FunctionCallingConfig.Mode.ANY,
        # List of functions that can be returned when the mode is ANY.
        # If the list is empty, any declared function can be returned.
        allowed_function_names=["get_product_sku"],
    )
)

model = GenerativeModel(
    model_name="gemini-1.5-flash-002",
    tools=[retail_tool],
    tool_config=retail_tool_config,
)
response = model.generate_content(
    "Do you have the Pixel 8 Pro 128GB in stock?",
)

print(response.candidates[0].function_calls)
# Example response:
# [
# name: "get_product_sku"
# args {
#   fields { key: "product_name" value { string_value: "Pixel 8 Pro 128GB" }}
#   }
# ]

Passaggi successivi

Per cercare e filtrare esempi di codice per altri prodotti Google Cloud, consulta Browser di esempio Google Cloud.