Resume un archivo de audio con Gemini 1.5 Pro

En este ejemplo, se muestra cómo usar un archivo de audio para resumir un podcast. Esta muestra solo funciona con Gemini 1.5 Pro.

Muestra de código

C#

Antes de probar este ejemplo, sigue las instrucciones de configuración para C# incluidas en la guía de inicio rápido de Vertex AI sobre cómo usar bibliotecas cliente. Para obtener más información, consulta la documentación de referencia de la API de Vertex AI C#.

Para autenticarte en Vertex AI, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para un entorno de desarrollo local.


using Google.Cloud.AIPlatform.V1;
using System;
using System.Threading.Tasks;

public class AudioInputSummarization
{
    public async Task<string> SummarizeAudio(
        string projectId = "your-project-id",
        string location = "us-central1",
        string publisher = "google",
        string model = "gemini-2.0-flash-001")
    {
        var predictionServiceClient = new PredictionServiceClientBuilder
        {
            Endpoint = $"{location}-aiplatform.googleapis.com"
        }.Build();

        string prompt = @"Please provide a summary for the audio.
Provide chapter titles with timestamps, be concise and short, no need to provide chapter summaries.
Do not make up any information that is not part of the audio and do not be verbose.";

        var generateContentRequest = new GenerateContentRequest
        {
            Model = $"projects/{projectId}/locations/{location}/publishers/{publisher}/models/{model}",
            Contents =
            {
                new Content
                {
                    Role = "USER",
                    Parts =
                    {
                        new Part { Text = prompt },
                        new Part { FileData = new() { MimeType = "audio/mp3", FileUri = "gs://cloud-samples-data/generative-ai/audio/pixel.mp3" } }
                    }
                }
            }
        };

        GenerateContentResponse response = await predictionServiceClient.GenerateContentAsync(generateContentRequest);

        string responseText = response.Candidates[0].Content.Parts[0].Text;
        Console.WriteLine(responseText);

        return responseText;
    }
}

Node.js

Antes de probar este ejemplo, sigue las instrucciones de configuración para Node.js incluidas en la guía de inicio rápido de Vertex AI sobre cómo usar bibliotecas cliente. Para obtener más información, consulta la documentación de referencia de la API de Vertex AI Node.js.

Para autenticarte en Vertex AI, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para un entorno de desarrollo local.

const {VertexAI} = require('@google-cloud/vertexai');

/**
 * TODO(developer): Update these variables before running the sample.
 */
async function summarize_audio(projectId = 'PROJECT_ID') {
  const vertexAI = new VertexAI({project: projectId, location: 'us-central1'});

  const generativeModel = vertexAI.getGenerativeModel({
    model: 'gemini-2.0-flash-001',
  });

  const filePart = {
    file_data: {
      file_uri: 'gs://cloud-samples-data/generative-ai/audio/pixel.mp3',
      mime_type: 'audio/mpeg',
    },
  };
  const textPart = {
    text: `
    Please provide a summary for the audio.
    Provide chapter titles with timestamps, be concise and short, no need to provide chapter summaries.
    Do not make up any information that is not part of the audio and do not be verbose.`,
  };

  const request = {
    contents: [{role: 'user', parts: [filePart, textPart]}],
  };

  const resp = await generativeModel.generateContent(request);
  const contentResponse = await resp.response;
  console.log(JSON.stringify(contentResponse));
}

¿Qué sigue?

Para buscar y filtrar muestras de código para otros Google Cloud productos, consulta el Google Cloud navegador de muestras.