Evalúa una respuesta del modelo en comparación con una referencia (verdad fundamental) con la métrica ROUGE

En esta muestra de código, se muestra cómo usar Vertex AI para calcular las métricas de ROUGE para evaluar modelos de resumen de texto. Muestra cómo definir una tarea de evaluación y calcular las puntuaciones de ROUGE para varios resúmenes generados en comparación con un resumen de referencia.

Explora más

Para obtener documentación en la que se incluye esta muestra de código, consulta lo siguiente:

Muestra de código

Go

Antes de probar este ejemplo, sigue las instrucciones de configuración para Go incluidas en la guía de inicio rápido de Vertex AI sobre cómo usar bibliotecas cliente. Para obtener más información, consulta la documentación de referencia de la API de Vertex AI Go.

Para autenticarte en Vertex AI, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para un entorno de desarrollo local.

import (
	"context"
	"fmt"
	"io"

	aiplatform "cloud.google.com/go/aiplatform/apiv1beta1"
	aiplatformpb "cloud.google.com/go/aiplatform/apiv1beta1/aiplatformpb"
	"google.golang.org/api/option"
)

// getROUGEScore evaluates a model response against a reference (ground truth) using the ROUGE metric
func getROUGEScore(w io.Writer, projectID, location string) error {
	// location = "us-central1"
	ctx := context.Background()
	apiEndpoint := fmt.Sprintf("%s-aiplatform.googleapis.com:443", location)
	client, err := aiplatform.NewEvaluationClient(ctx, option.WithEndpoint(apiEndpoint))

	if err != nil {
		return fmt.Errorf("unable to create aiplatform client: %w", err)
	}
	defer client.Close()

	modelResponse := `
The Great Barrier Reef, the world's largest coral reef system located in Australia,
is a vast and diverse ecosystem. However, it faces serious threats from climate change,
ocean acidification, and coral bleaching, endangering its rich marine life.
`
	reference := `
The Great Barrier Reef, the world's largest coral reef system, is
located off the coast of Queensland, Australia. It's a vast
ecosystem spanning over 2,300 kilometers with thousands of reefs
and islands. While it harbors an incredible diversity of marine
life, including endangered species, it faces serious threats from
climate change, ocean acidification, and coral bleaching.
`
	req := aiplatformpb.EvaluateInstancesRequest{
		Location: fmt.Sprintf("projects/%s/locations/%s", projectID, location),
		MetricInputs: &aiplatformpb.EvaluateInstancesRequest_RougeInput{
			RougeInput: &aiplatformpb.RougeInput{
				// Check the API reference for the list of supported ROUGE metric types:
				// https://cloud.google.com/vertex-ai/docs/reference/rpc/google.cloud.aiplatform.v1beta1#rougespec
				MetricSpec: &aiplatformpb.RougeSpec{
					RougeType: "rouge1",
				},
				Instances: []*aiplatformpb.RougeInstance{
					{
						Prediction: &modelResponse,
						Reference:  &reference,
					},
				},
			},
		},
	}

	resp, err := client.EvaluateInstances(ctx, &req)
	if err != nil {
		return fmt.Errorf("evaluateInstances failed: %v", err)
	}

	fmt.Fprintln(w, "evaluation results:")
	fmt.Fprintln(w, resp.GetRougeResults().GetRougeMetricValues())
	// Example response:
	// [score:0.6597938]

	return nil
}

Python

Antes de probar este ejemplo, sigue las instrucciones de configuración para Python incluidas en la guía de inicio rápido de Vertex AI sobre cómo usar bibliotecas cliente. Para obtener más información, consulta la documentación de referencia de la API de Vertex AI Python.

Para autenticarte en Vertex AI, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para un entorno de desarrollo local.

import pandas as pd

import vertexai
from vertexai.preview.evaluation import EvalTask

# TODO(developer): Update & uncomment line below
# PROJECT_ID = "your-project-id"
vertexai.init(project=PROJECT_ID, location="us-central1")

reference_summarization = """
The Great Barrier Reef, the world's largest coral reef system, is
located off the coast of Queensland, Australia. It's a vast
ecosystem spanning over 2,300 kilometers with thousands of reefs
and islands. While it harbors an incredible diversity of marine
life, including endangered species, it faces serious threats from
climate change, ocean acidification, and coral bleaching."""

# Compare pre-generated model responses against the reference (ground truth).
eval_dataset = pd.DataFrame(
    {
        "response": [
            """The Great Barrier Reef, the world's largest coral reef system located
        in Australia, is a vast and diverse ecosystem. However, it faces serious
        threats from climate change, ocean acidification, and coral bleaching,
        endangering its rich marine life.""",
            """The Great Barrier Reef, a vast coral reef system off the coast of
        Queensland, Australia, is the world's largest. It's a complex ecosystem
        supporting diverse marine life, including endangered species. However,
        climate change, ocean acidification, and coral bleaching are serious
        threats to its survival.""",
            """The Great Barrier Reef, the world's largest coral reef system off the
        coast of Australia, is a vast and diverse ecosystem with thousands of
        reefs and islands. It is home to a multitude of marine life, including
        endangered species, but faces serious threats from climate change, ocean
        acidification, and coral bleaching.""",
        ],
        "reference": [reference_summarization] * 3,
    }
)
eval_task = EvalTask(
    dataset=eval_dataset,
    metrics=[
        "rouge_1",
        "rouge_2",
        "rouge_l",
        "rouge_l_sum",
    ],
)
result = eval_task.evaluate()

print("Summary Metrics:\n")
for key, value in result.summary_metrics.items():
    print(f"{key}: \t{value}")

print("\n\nMetrics Table:\n")
print(result.metrics_table)
# Example response:
#
# Summary Metrics:
#
# row_count:      3
# rouge_1/mean:   0.7191161666666667
# rouge_1/std:    0.06765143922270488
# rouge_2/mean:   0.5441118566666666
# ...
# Metrics Table:
#
#                                        response                         reference  ...  rouge_l/score  rouge_l_sum/score
# 0  The Great Barrier Reef, the world's ...  \n    The Great Barrier Reef, the ...  ...       0.577320           0.639175
# 1  The Great Barrier Reef, a vast coral...  \n    The Great Barrier Reef, the ...  ...       0.552381           0.666667
# 2  The Great Barrier Reef, the world's ...  \n    The Great Barrier Reef, the ...  ...       0.774775           0.774775

¿Qué sigue?

Para buscar y filtrar muestras de código para otros productos de Google Cloud , consulta el navegador de muestras deGoogle Cloud .