Compila, prueba e implementa un chatbot de Langchain en Reasoning Engine
Organiza tus páginas con colecciones
Guarda y categoriza el contenido según tus preferencias.
En este ejemplo, se muestra cómo compilar, probar y, luego, implementar un chatbot de Langchain en Reasoning Engine.
Explora más
Para obtener documentación en la que se incluye esta muestra de código, consulta lo siguiente:
Muestra de código
Salvo que se indique lo contrario, el contenido de esta página está sujeto a la licencia Atribución 4.0 de Creative Commons, y los ejemplos de código están sujetos a la licencia Apache 2.0. Para obtener más información, consulta las políticas del sitio de Google Developers. Java es una marca registrada de Oracle o sus afiliados.
[[["Fácil de comprender","easyToUnderstand","thumb-up"],["Resolvió mi problema","solvedMyProblem","thumb-up"],["Otro","otherUp","thumb-up"]],[["Difícil de entender","hardToUnderstand","thumb-down"],["Información o código de muestra incorrectos","incorrectInformationOrSampleCode","thumb-down"],["Faltan la información o los ejemplos que necesito","missingTheInformationSamplesINeed","thumb-down"],["Problema de traducción","translationIssue","thumb-down"],["Otro","otherDown","thumb-down"]],[],[],[],null,["# Build, test, and deploy a Langchain chatbot on Reasoning Engine\n\nThis sample demonstrates how to build, test, and deploy a Langchain chatbot on Reasoning Engine.\n\nExplore further\n---------------\n\n\nFor detailed documentation that includes this code sample, see the following:\n\n- [Agent Engine API](/vertex-ai/generative-ai/docs/model-reference/reasoning-engine)\n\nCode sample\n-----------\n\n### Python\n\n\nBefore trying this sample, follow the Python setup instructions in the\n[Vertex AI quickstart using\nclient libraries](/vertex-ai/docs/start/client-libraries).\n\n\nFor more information, see the\n[Vertex AI Python API\nreference documentation](/python/docs/reference/aiplatform/latest).\n\n\nTo authenticate to Vertex AI, set up Application Default Credentials.\nFor more information, see\n\n[Set up authentication for a local development environment](/docs/authentication/set-up-adc-local-dev-environment).\n\n\n from typing import List\n\n import https://cloud.google.com/python/docs/reference/vertexai/latest/\n from vertexai.preview import https://cloud.google.com/python/docs/reference/vertexai/latest/vertexai.preview.reasoning_engines.html\n\n # TODO(developer): Update and un-comment below lines\n # PROJECT_ID = \"your-project-id\"\n # staging_bucket = \"gs://YOUR_BUCKET_NAME\"\n\n https://cloud.google.com/python/docs/reference/vertexai/latest/.init(\n project=PROJECT_ID, location=\"us-central1\", staging_bucket=staging_bucket\n )\n\n class LangchainApp:\n def __init__(self, project: str, location: str) -\u003e None:\n self.project_id = project\n self.location = location\n\n def set_up(self) -\u003e None:\n from langchain_core.prompts import ChatPromptTemplate\n from langchain_google_vertexai import ChatVertexAI\n\n system = (\n \"You are a helpful assistant that answers questions \"\n \"about Google Cloud.\"\n )\n human = \"{text}\"\n prompt = ChatPromptTemplate.from_messages(\n [(\"system\", system), (\"human\", human)]\n )\n chat = ChatVertexAI(project=self.project_id, location=self.location)\n self.chain = prompt | chat\n\n def query(self, question: str) -\u003e Union[str, List[Union[str, Dict]]]:\n \"\"\"Query the application.\n Args:\n question: The user prompt.\n Returns:\n str: The LLM response.\n \"\"\"\n return self.chain.invoke({\"text\": question}).content\n\n # Locally test\n app = LangchainApp(project=PROJECT_ID, location=\"us-central1\")\n app.set_up()\n print(app.query(\"What is Vertex AI?\"))\n\n # Create a remote app with Reasoning Engine\n # Deployment of the app should take a few minutes to complete.\n reasoning_engine = https://cloud.google.com/python/docs/reference/vertexai/latest/vertexai.preview.reasoning_engines.html.https://cloud.google.com/python/docs/reference/vertexai/latest/vertexai.preview.reasoning_engines.ReasoningEngine.html.create(\n LangchainApp(project=PROJECT_ID, location=\"us-central1\"),\n requirements=[\n \"google-cloud-aiplatform[langchain,reasoningengine]\",\n \"cloudpickle==3.0.0\",\n \"pydantic==2.7.4\",\n ],\n display_name=\"Demo LangChain App\",\n description=\"This is a simple LangChain app.\",\n # sys_version=\"3.10\", # Optional\n extra_packages=[],\n )\n # Example response:\n # Model_name will become a required arg for VertexAIEmbeddings starting...\n # ...\n # Create ReasoningEngine backing LRO: projects/123456789/locations/us-central1/reasoningEngines/...\n # ReasoningEngine created. Resource name: projects/123456789/locations/us-central1/reasoningEngines/...\n # ...\n\nWhat's next\n-----------\n\n\nTo search and filter code samples for other Google Cloud products, see the\n[Google Cloud sample browser](/docs/samples?product=generativeaionvertexai)."]]