Halaman ini menunjukkan cara menggunakan Vertex AI SDK untuk menjalankan tugas Vertex AI RAG Engine.
Anda juga dapat mengikutinya menggunakan notebook Pengantar Mesin RAG Vertex AI ini.
Menyiapkan konsol Google Cloud
Untuk menggunakan Mesin RAG Vertex AI, lakukan hal berikut:
Jalankan perintah ini di konsol Google Cloud untuk menyiapkan project Anda.
gcloud config set {project}
Jalankan perintah ini untuk mengizinkan login Anda.
gcloud auth application-default login
Menjalankan Vertex AI RAG Engine
Salin dan tempel kode contoh ini ke konsol Google Cloud untuk menjalankan Vertex AI RAG Engine.
Python
from vertexai import rag
from vertexai.generative_models import GenerativeModel, Tool
import vertexai
# Create a RAG Corpus, Import Files, and Generate a response
# TODO(developer): Update and un-comment below lines
# PROJECT_ID = "your-project-id"
# display_name = "test_corpus"
# paths = ["https://drive.google.com/file/d/123", "gs://my_bucket/my_files_dir"] # Supports Google Cloud Storage and Google Drive Links
# Initialize Vertex AI API once per session
vertexai.init(project=PROJECT_ID, location="us-central1")
# Create RagCorpus
# Configure embedding model, for example "text-embedding-004".
embedding_model_config = rag.EmbeddingModelConfig(
publisher_model="publishers/google/models/text-embedding-004"
)
backend_config = rag.RagVectorDbConfig(rag_embedding_model_config=embedding_model_config)
rag_corpus = rag.create_corpus(
display_name=display_name,
backend_config=backend_config,
)
# List the rag corpus you just created
rag_corpus = rag.list_corpora()
# Import Files to the RagCorpus
# choose a corpus to import files to, you can use rag_corpus.name for just created corpus
# or use the name in list_corpora()
corpus_name = rag_corpus.name
transformation_config = rag.TransformationConfig(
chunking_config=rag.ChunkingConfig(
chunk_size=512,
chunk_overlap=100,
),
)
rag.import_files(
corpus_name,
paths,
transformation_config=transformation_config, # Optional
max_embedding_requests_per_min=1000, # Optional
)
# Alternatively, you can use async import
response = await rag.import_files_async(
corpus_name,
paths,
transformation_config=transformation_config, # Optional
max_embedding_requests_per_min=1000, # Optional
)
result = await response.result()
print(result)
# List the files in the rag corpus
rag.list_files(corpus_name)
# Direct context retrieval
rag_retrieval_config=rag.RagRetrievalConfig(
top_k=3, # Optional
filter=rag.Filter(vector_distance_threshold=0.5) # Optional
)
response = rag.retrieval_query(
rag_resources=[
rag.RagResource(
rag_corpus=corpus_name,
# Optional: supply IDs from `rag.list_files()`.
# rag_file_ids=["rag-file-1", "rag-file-2", ...],
)
],
text="What is RAG and why it is helpful?",
rag_retrieval_config=rag_retrieval_config,
)
print(response)
# Enhance generation
# Create a RAG retrieval tool
rag_retrieval_tool = Tool.from_retrieval(
retrieval=rag.Retrieval(
source=rag.VertexRagStore(
rag_resources=[
rag.RagResource(
rag_corpus=corpus_name, # Currently only 1 corpus is allowed.
# Optional: supply IDs from `rag.list_files()`.
# rag_file_ids=["rag-file-1", "rag-file-2", ...],
)
],
rag_retrieval_config=rag_retrieval_config,
),
)
)
# Create a gemini model instance
rag_model = GenerativeModel(
model_name="gemini-1.5-flash-001", tools=[rag_retrieval_tool]
)
# Generate response
response = rag_model.generate_content("What is RAG and why it is helpful?")
print(response.text)
# Example response:
# RAG stands for Retrieval-Augmented Generation.
# It's a technique used in AI to enhance the quality of responses
# ...
Langkah berikutnya
- Untuk mempelajari RAG API lebih lanjut, lihat Vertex AI RAG Engine API.
- Untuk mempelajari respons dari RAG lebih lanjut, lihat Output Pengambilan dan Pembuatan Mesin RAG Vertex AI.
- Untuk mempelajari Vertex AI RAG Engine, lihat ringkasan Vertex AI RAG Engine.