Os modelos Llama na Vertex AI oferecem modelos totalmente gerenciados e sem servidor modelos como APIs. Para usar um modelo Llama na Vertex AI, envie uma solicitação diretamente para o endpoint da API Vertex AI. Devido ao Os modelos Llama usam uma API gerenciada, não é necessário provisionar nem gerenciar a infraestrutura.
É possível transmitir as respostas para reduzir a percepção de latência do usuário final. Uma resposta transmitida usa eventos enviados pelo servidor (SSE) para transmitir a resposta de forma incremental.
Não há cobranças durante o Período de pré-lançamento. Se você precisar pronto para produção, use os modelos Llama auto-hospedados.
Modelos Llama 3.1 disponíveis
O Llama 3.1 é um modelo de linguagem autoregressivo que usa uma arquitetura de transformador. As versões ajustadas usam o ajuste supervisionado (SFT, na sigla em inglês) e aprendizado por reforço com feedback humano (RLHF) para se alinhar com o humano preferências de utilidade e segurança.
Os seguintes modelos Llama estão disponíveis na Meta para uso na Vertex AI. Para acessar um modelo Llama, acesse a Card de modelo do Model Garden.
Llama 3.1 405B
O Llama 3.1 405B é o modelo mais poderoso e versátil da Meta para data. É o maior modelo de fundação disponível abertamente, com recursos da geração de dados sintéticos à destilação de modelos, direção, matemática, ferramentas uso, tradução multilíngue e muito mais. Para mais informações, consulte Site Llama 3.1 da Meta.
O Llama 3.1 405B é otimizado para os seguintes casos de uso:
- Aplicativos de nível empresarial
- Pesquisa e desenvolvimento
- Geração de dados sintéticos e destilação de modelos
Usar modelos de Llama
Ao enviar solicitações para usar os modelos do Llama, use o modelo a seguir: nomes:
- Para o Llama 3.1 405B, use
llama3-405b-instruct-mass
.
Recomendamos usar as versões de modelo que incluem um sufixo que
começa com o símbolo @
devido às possíveis diferenças entre
de versões de modelo. Se você não especificar uma versão do modelo, a versão mais recente será
sempre usado, o que pode afetar inadvertidamente seus fluxos de trabalho quando uma versão do modelo
mudanças.
Antes de começar
Para usar modelos Llama com a Vertex AI, faça o
etapas a seguir. A API Vertex AI (aiplatform.googleapis.com
) precisa
estar ativada para usar a Vertex AI. Se você já tiver um projeto existente com
a API do Vertex AI ativada, poderá usar esse projeto em vez de
criar um novo.
Verifique se você tem as permissões necessárias para ativar e usar de modelos de machine learning. Para mais informações, consulte Conceder as permissões necessárias.
- Sign in to your Google Cloud account. If you're new to Google Cloud, create an account to evaluate how our products perform in real-world scenarios. New customers also get $300 in free credits to run, test, and deploy workloads.
-
In the Google Cloud console, on the project selector page, select or create a Google Cloud project.
-
Make sure that billing is enabled for your Google Cloud project.
-
Enable the Vertex AI API.
-
In the Google Cloud console, on the project selector page, select or create a Google Cloud project.
-
Make sure that billing is enabled for your Google Cloud project.
-
Enable the Vertex AI API.
- Acesse um dos seguintes cards de modelo do Model Garden e clique em enable:
Fazer uma chamada de streaming para um modelo Llama
O exemplo a seguir faz uma chamada de streaming para um modelo Llama.
REST
Depois de configurou seu ambiente use REST para testar uma solicitação de texto. O exemplo a seguir envia uma solicitação ao publisher endpoint do modelo.
Antes de usar os dados da solicitação abaixo, faça as substituições a seguir:
- LOCATION: uma região compatível com modelos Llama.
- MODEL: o nome do modelo que você quer usar.
- ROLE: o papel associado a uma mensagem. É possível especificar
user
ouassistant
. A primeira mensagem precisa usar o papeluser
. Os modelos funcionam com voltas alternadas deuser
eassistant
. Se a mensagem final usar o papelassistant
, o conteúdo da resposta continuará imediatamente a partir do conteúdo dessa mensagem. É possível usar isso para restringir parte da resposta do modelo. - CONTENT: o conteúdo, como texto, da mensagem
user
ouassistant
. - MAX_OUTPUT_TOKENS:
número máximo de tokens que podem ser gerados na resposta. Um token tem cerca de quatro caracteres. 100 tokens correspondem a cerca de 60 a 80 palavras.
Especifique um valor mais baixo para respostas mais curtas e um valor mais alto para respostas potencialmente mais longas.
- STREAM: um booleano que especifica se a resposta será transmitida ou não. Transmita sua resposta para reduzir a percepção de latência do uso final. Defina como
true
para transmitir a resposta efalse
para retornar a resposta de uma só vez.
Método HTTP e URL:
POST https://LOCATION-aiplatform.googleapis.com/v1beta1/projects/PROJECT_ID/locations/LOCATION/endpoints/openapi/chat/completions
Corpo JSON da solicitação:
{ "model": "meta/MODEL", "messages": [ { "role": "ROLE", "content": "CONTENT" } ], "max_tokens": MAX_OUTPUT_TOKENS, "stream": true }
Para enviar a solicitação, escolha uma destas opções:
curl
Salve o corpo da solicitação em um arquivo com o nome request.json
e execute o comando a seguir:
curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION-aiplatform.googleapis.com/v1beta1/projects/PROJECT_ID/locations/LOCATION/endpoints/openapi/chat/completions"
PowerShell
Salve o corpo da solicitação em um arquivo com o nome request.json
e execute o comando a seguir:
$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }
Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION-aiplatform.googleapis.com/v1beta1/projects/PROJECT_ID/locations/LOCATION/endpoints/openapi/chat/completions" | Select-Object -Expand Content
Você receberá uma resposta JSON semelhante a seguinte.
Fazer uma chamada unária para um modelo Llama
O exemplo a seguir faz uma chamada unária para um modelo Llama.
REST
Depois de configurou seu ambiente use REST para testar uma solicitação de texto. O exemplo a seguir envia uma solicitação ao publisher endpoint do modelo.
Antes de usar os dados da solicitação abaixo, faça as substituições a seguir:
- LOCATION: uma região compatível com modelos Llama.
- MODEL: o nome do modelo que você quer usar.
- ROLE: o papel associado a uma mensagem. É possível especificar
user
ouassistant
. A primeira mensagem precisa usar o papeluser
. Os modelos funcionam com voltas alternadas deuser
eassistant
. Se a mensagem final usar o papelassistant
, o conteúdo da resposta continuará imediatamente a partir do conteúdo dessa mensagem. É possível usar isso para restringir parte da resposta do modelo. - CONTENT: o conteúdo, como texto, da mensagem
user
ouassistant
. - MAX_OUTPUT_TOKENS:
número máximo de tokens que podem ser gerados na resposta. Um token tem cerca de quatro caracteres. 100 tokens correspondem a cerca de 60 a 80 palavras.
Especifique um valor mais baixo para respostas mais curtas e um valor mais alto para respostas potencialmente mais longas.
- STREAM: um booleano que especifica se a resposta será transmitida ou não. Transmita sua resposta para reduzir a percepção de latência do uso final. Defina como
true
para transmitir a resposta efalse
para retornar a resposta de uma só vez.
Método HTTP e URL:
POST https://LOCATION-aiplatform.googleapis.com/v1beta1/projects/PROJECT_ID/locations/LOCATION/endpoints/openapi/chat/completions
Corpo JSON da solicitação:
{ "model": "meta/MODEL", "messages": [ { "role": "ROLE", "content": "CONTENT" } ], "max_tokens": MAX_OUTPUT_TOKENS, "stream": false }
Para enviar a solicitação, escolha uma destas opções:
curl
Salve o corpo da solicitação em um arquivo com o nome request.json
e execute o comando a seguir:
curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION-aiplatform.googleapis.com/v1beta1/projects/PROJECT_ID/locations/LOCATION/endpoints/openapi/chat/completions"
PowerShell
Salve o corpo da solicitação em um arquivo com o nome request.json
e execute o comando a seguir:
$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }
Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION-aiplatform.googleapis.com/v1beta1/projects/PROJECT_ID/locations/LOCATION/endpoints/openapi/chat/completions" | Select-Object -Expand Content
Você receberá uma resposta JSON semelhante a seguinte.
Exemplos
Para conferir exemplos de uso de modelos Llama, execute os seguintes notebooks:
Descrição | Abrir em |
---|---|
Use o Llama Guard para proteger as entradas e saídas do LLM. |
Colab GitHub Vertex AI Workbench |
Avalie modelos do Llama 3.1 usando a avaliação lado a lado automática (AutoSxS). |
Colab GitHub Vertex AI Workbench |
Disponibilidade e cotas da região do modelo Llama
Para modelos Llama, aplica-se uma cota para cada região onde o modelo está disponível. A cota é especificada em consultas por minuto (QPM, na sigla em inglês).
As regiões compatíveis, as cotas padrão e o tamanho máximo do contexto de cada modelo lama listado nas tabelas abaixo:
Llama 3.1 405B
Região | Sistema de cotas | Tamanho de contexto compatível |
---|---|---|
us-central1 |
60 QPM | 32.000 tokens |
Para aumentar alguma das suas cotas de IA generativa na Vertex AI, use o console do Google Cloud para solicitar um aumento de cota. Para saber mais sobre cotas, consulte Trabalhar com cotas.