Comprensione dei video

Puoi aggiungere video alle richieste di Gemini per svolgere attività che richiedono di comprendere i contenuti dei video inclusi. Questa pagina descrive come aggiungere video alle richieste a Gemini in Vertex AI utilizzando la console Google Cloud e l'API Vertex AI.

Modelli supportati

La seguente tabella elenca i modelli che supportano la comprensione dei video:

Modello Dettagli sulla modalità video

Gemini 1.5 Flash

Vai alla scheda del modello Gemini 1.5 Flash

Durata massima del video:

  • Con audio: circa 50 minuti
  • Senza audio: 60 minuti

Numero massimo di video per prompt: 10

Gemini 1.5 Pro

Vai alla scheda del modello Gemini 1.5 Pro

Durata massima del video:

  • Con audio: circa 50 minuti
  • Senza audio: 60 minuti

Numero massimo di video per prompt: 10

Gemini 1.0 Pro Vision

Vai alla scheda del modello Gemini 1.0 Pro Vision

Durata massima del video: 2 minuti

Numero massimo di video per prompt: 1

L'audio del video viene ignorato.

Per un elenco delle lingue supportate dai modelli Gemini, consulta le informazioni sui modelli Google. Per scoprire di più su come progettare prompt multimodali, consulta Progettare prompt multimodali. Se stai cercando un modo per utilizzare Gemini direttamente dalle tue app web e mobile, consulta la sezione Vertex AI negli SDK Firebase per le app Android, Swift, web e Flutter.

Aggiungere video a una richiesta

Puoi aggiungere un singolo video o più video nella tua richiesta a Gemini e il video può includere l'audio.

Video singolo

Il codice campione in ciascuna delle seguenti schede mostra un modo diverso per identificare gli elementi di un video. Questo esempio funziona con tutti i modelli multimodali Gemini.

Python

Per scoprire come installare o aggiornare l'SDK Vertex AI per Python, consulta Installare l'SDK Vertex AI per Python. Per ulteriori informazioni, consulta la documentazione di riferimento dell'API Vertex AI SDK for Python.

Risposte dinamiche e non dinamiche

Puoi scegliere se il modello genera risposte in streaming o non in streaming. Per le risposte dinamiche, ricevi ogni risposta non appena viene generato il token di output. Per le risposte non dinamiche, ricevi tutte le risposte dopo la generazione di tutti i token di output.

Per una risposta dinamica, utilizza il parametro stream in generate_content.

  response = model.generate_content(contents=[...], stream = True)
  

Per una risposta non in streaming, rimuovi il parametro o impostalo su False.

Codice di esempio

import vertexai

from vertexai.generative_models import GenerativeModel, Part

# TODO(developer): Update and un-comment below line
# PROJECT_ID = "your-project-id"

vertexai.init(project=PROJECT_ID, location="us-central1")

vision_model = GenerativeModel("gemini-1.5-flash-002")

# Generate text
response = vision_model.generate_content(
    [
        Part.from_uri(
            "gs://cloud-samples-data/video/animals.mp4", mime_type="video/mp4"
        ),
        "What is in the video?",
    ]
)
print(response.text)
# Example response:
# Here's a summary of the video's content.
# The video shows a series of animals at the Los Angeles Zoo interacting
# with waterproof cameras attached to various devices.
# ...

Java

Prima di provare questo esempio, segui le istruzioni di configurazione di Java nella guida rapida di Vertex AI. Per ulteriori informazioni, consulta la documentazione di riferimento dell'SDK Java Vertex AI per Gemini.

Per autenticarti in Vertex AI, configura le credenziali predefinite dell'applicazione. Per maggiori informazioni, vedi Configurare l'ADC per un ambiente di sviluppo locale.

Risposte dinamiche e non dinamiche

Puoi scegliere se il modello genera risposte in streaming o non in streaming. Per le risposte dinamiche, ricevi ogni risposta non appena viene generato il token di output. Per le risposte non dinamiche, ricevi tutte le risposte dopo la generazione di tutti i token di output.

Per una risposta dinamica, utilizza il metodo generateContentStream.

  public ResponseStream<GenerateContentResponse> generateContentStream(Content content)
  

Per una risposta non in streaming, utilizza il metodo generateContent.

  public GenerateContentResponse generateContent(Content content)
  

Codice di esempio

import com.google.cloud.vertexai.VertexAI;
import com.google.cloud.vertexai.api.GenerateContentResponse;
import com.google.cloud.vertexai.generativeai.ContentMaker;
import com.google.cloud.vertexai.generativeai.GenerativeModel;
import com.google.cloud.vertexai.generativeai.PartMaker;
import com.google.cloud.vertexai.generativeai.ResponseHandler;
import java.io.IOException;

public class MultimodalVideoInput {

  public static void main(String[] args) throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "your-google-cloud-project-id";
    String location = "us-central1";
    String modelName = "gemini-1.5-flash-001";

    multimodalVideoInput(projectId, location, modelName);
  }

  // Analyzes the given video input.
  public static void multimodalVideoInput(String projectId, String location, String modelName)
      throws IOException {
    // Initialize client that will be used to send requests.
    // This client only needs to be created once, and can be reused for multiple requests.
    try (VertexAI vertexAI = new VertexAI(projectId, location)) {
      String videoUri = "gs://cloud-samples-data/video/animals.mp4";

      GenerativeModel model = new GenerativeModel(modelName, vertexAI);
      GenerateContentResponse response = model.generateContent(
          ContentMaker.fromMultiModalData(
              "What is in the video?",
              PartMaker.fromMimeTypeAndData("video/mp4", videoUri)
          ));

      String output = ResponseHandler.getText(response);
      System.out.println(output);
    }
  }
}

Node.js

Prima di provare questo esempio, segui le istruzioni di configurazione di Node.js nella guida rapida all'IA generativa con l'SDK Node.js. Per ulteriori informazioni, consulta la documentazione di riferimento dell'SDK Node.js per Gemini.

Per autenticarti in Vertex AI, configura le credenziali predefinite dell'applicazione. Per maggiori informazioni, vedi Configurare l'ADC per un ambiente di sviluppo locale.

Risposte dinamiche e non dinamiche

Puoi scegliere se il modello genera risposte in streaming o non in streaming. Per le risposte dinamiche, ricevi ogni risposta non appena viene generato il token di output. Per le risposte non dinamiche, ricevi tutte le risposte dopo la generazione di tutti i token di output.

Per una risposta dinamica, utilizza il metodo generateContentStream.

  const streamingResp = await generativeModel.generateContentStream(request);
  

Per una risposta non in streaming, utilizza il metodo generateContent.

  const streamingResp = await generativeModel.generateContent(request);
  

Codice di esempio

const {VertexAI} = require('@google-cloud/vertexai');

/**
 * TODO(developer): Update these variables before running the sample.
 */
async function sendMultiModalPromptWithVideo(
  projectId = 'PROJECT_ID',
  location = 'us-central1',
  model = 'gemini-1.5-flash-001'
) {
  // Initialize Vertex with your Cloud project and location
  const vertexAI = new VertexAI({project: projectId, location: location});

  const generativeVisionModel = vertexAI.getGenerativeModel({
    model: model,
  });

  // Pass multimodal prompt
  const request = {
    contents: [
      {
        role: 'user',
        parts: [
          {
            fileData: {
              fileUri: 'gs://cloud-samples-data/video/animals.mp4',
              mimeType: 'video/mp4',
            },
          },
          {
            text: 'What is in the video?',
          },
        ],
      },
    ],
  };

  // Create the response
  const response = await generativeVisionModel.generateContent(request);
  // Wait for the response to complete
  const aggregatedResponse = await response.response;
  // Select the text from the response
  const fullTextResponse =
    aggregatedResponse.candidates[0].content.parts[0].text;

  console.log(fullTextResponse);
}

Go

Prima di provare questo esempio, segui le istruzioni di configurazione di Go nella guida introduttiva di Vertex AI. Per ulteriori informazioni, consulta la documentazione di riferimento dell'SDK Go di Vertex AI per Gemini.

Per autenticarti a Vertex AI, configura le Credenziali predefinite dell'applicazione. Per maggiori informazioni, vedi Configurare l'ADC per un ambiente di sviluppo locale.

Risposte dinamiche e non dinamiche

Puoi scegliere se il modello genera risposte in streaming o non in streaming. Per le risposte dinamiche, ricevi ogni risposta non appena viene generato il token di output. Per le risposte non dinamiche, ricevi tutte le risposte dopo la generazione di tutti i token di output.

Per una risposta dinamica, utilizza il metodo GenerateContentStream.

  iter := model.GenerateContentStream(ctx, genai.Text("Tell me a story about a lumberjack and his giant ox. Keep it very short."))
  

Per una risposta non in streaming, utilizza il metodo GenerateContent.

  resp, err := model.GenerateContent(ctx, genai.Text("What is the average size of a swallow?"))
  

Codice di esempio

import (
	"context"
	"errors"
	"fmt"
	"io"
	"mime"
	"path/filepath"

	"cloud.google.com/go/vertexai/genai"
)

// generateMultimodalContent generates a response into w, based upon the prompt and video.
func generateMultimodalContent(w io.Writer, projectID, location, modelName string) error {
	// location := "us-central1"
	// modelName := "gemini-1.5-flash-001"
	ctx := context.Background()

	client, err := genai.NewClient(ctx, projectID, location)
	if err != nil {
		return fmt.Errorf("unable to create client: %w", err)
	}
	defer client.Close()

	model := client.GenerativeModel(modelName)
	model.SetTemperature(0.4)

	// Given a video file URL, prepare video file as genai.Part
	part := genai.FileData{
		MIMEType: mime.TypeByExtension(filepath.Ext("animals.mp4")),
		FileURI:  "gs://cloud-samples-data/video/animals.mp4",
	}

	res, err := model.GenerateContent(ctx, part, genai.Text("What is in this video?"))
	if err != nil {
		return fmt.Errorf("unable to generate contents: %w", err)
	}

	if len(res.Candidates) == 0 ||
		len(res.Candidates[0].Content.Parts) == 0 {
		return errors.New("empty response from model")
	}

	fmt.Fprintf(w, "generated response: %s\n", res.Candidates[0].Content.Parts[0])
	return nil
}

C#

Prima di provare questo esempio, segui le istruzioni di configurazione di C# nella guida rapida di Vertex AI. Per ulteriori informazioni, consulta la documentazione di riferimento C# di Vertex AI.

Per autenticarti in Vertex AI, configura le credenziali predefinite dell'applicazione. Per maggiori informazioni, vedi Configurare l'ADC per un ambiente di sviluppo locale.

Risposte dinamiche e non dinamiche

Puoi scegliere se il modello genera risposte in streaming o non in streaming. Per le risposte dinamiche, ricevi ogni risposta non appena viene generato il token di output. Per le risposte non dinamiche, ricevi tutte le risposte dopo la generazione di tutti i token di output.

Per una risposta dinamica, utilizza il metodo StreamGenerateContent.

  public virtual PredictionServiceClient.StreamGenerateContentStream StreamGenerateContent(GenerateContentRequest request)
  

Per una risposta non in streaming, utilizza il metodo GenerateContentAsync.

  public virtual Task<GenerateContentResponse> GenerateContentAsync(GenerateContentRequest request)
  

Per ulteriori informazioni su come il server può trasmettere le risposte in streaming, consulta RPC in streaming.

Codice di esempio


using Google.Api.Gax.Grpc;
using Google.Cloud.AIPlatform.V1;
using System.Text;
using System.Threading.Tasks;

public class MultimodalVideoInput
{
    public async Task<string> GenerateContent(
        string projectId = "your-project-id",
        string location = "us-central1",
        string publisher = "google",
        string model = "gemini-1.5-flash-001"
    )
    {
        var predictionServiceClient = new PredictionServiceClientBuilder
        {
            Endpoint = $"{location}-aiplatform.googleapis.com"
        }.Build();

        var generateContentRequest = new GenerateContentRequest
        {
            Model = $"projects/{projectId}/locations/{location}/publishers/{publisher}/models/{model}",
            Contents =
            {
                new Content
                {
                    Role = "USER",
                    Parts =
                    {
                        new Part { Text = "What's in the video?" },
                        new Part { FileData = new() { MimeType = "video/mp4", FileUri = "gs://cloud-samples-data/video/animals.mp4" }}
                    }
                }
            }
        };

        using PredictionServiceClient.StreamGenerateContentStream response = predictionServiceClient.StreamGenerateContent(generateContentRequest);

        StringBuilder fullText = new();

        AsyncResponseStream<GenerateContentResponse> responseStream = response.GetResponseStream();
        await foreach (GenerateContentResponse responseItem in responseStream)
        {
            fullText.Append(responseItem.Candidates[0].Content.Parts[0].Text);
        }
        return fullText.ToString();
    }
}

REST

Dopo aver configurato l'ambiente, puoi utilizzare REST per testare un prompt di testo. Il seguente esempio invia una richiesta all'endpoint del modello del publisher.

Prima di utilizzare i dati della richiesta, apporta le seguenti sostituzioni:

  • LOCATION: la regione in cui elaborare la richiesta. Inserisci una regione supportata. Per l'elenco completo delle regioni supportate, consulta Località disponibili.

    Fai clic per espandere un elenco parziale delle regioni disponibili

    • us-central1
    • us-west4
    • northamerica-northeast1
    • us-east4
    • us-west1
    • asia-northeast3
    • asia-southeast1
    • asia-northeast1
  • PROJECT_ID: il tuo ID progetto.
  • FILE_URI: l'URI o l'URL del file da includere nel prompt. I valori accettabili sono:
    • URI del bucket Cloud Storage: l'oggetto deve essere leggibile pubblicamente o trovarsi nello stesso progetto Google Cloud che invia la richiesta. Per gemini-1.5-pro e gemini-1.5-flash, il limite di dimensioni è 2 GB. Per gemini-1.0-pro-vision, il limite di dimensioni è 20 MB.
    • URL HTTP:l'URL del file deve essere pubblicamente leggibile. Puoi specificare un file video, un file audio e fino a 10 file immagine per richiesta. I file audio, i file video e i documenti non possono superare i 15 MB.
    • URL del video di YouTube: il video di YouTube deve essere di proprietà dell'account che hai utilizzato per accedere alla console Google Cloud o essere pubblico. È supportato un solo URL video di YouTube per richiesta.

    Quando specifichi un fileURI, devi specificare anche il tipo di media (mimeType) del file. Se i Controlli di servizio VPC sono abilitati, la specifica di un URL di file multimediale per fileURI non è supportata.

    Se non hai un file video in Cloud Storage, puoi utilizzare il seguente file disponibile pubblicamente: gs://cloud-samples-data/video/animals.mp4 con un tipo MIME di video/mp4. Per visualizzare questo video, apri il file MP4 di esempio.

  • MIME_TYPE: il tipo di media del file specificato nei campi data o fileUri. I valori accettati sono:

    Fai clic per espandere i tipi MIME

    • application/pdf
    • audio/mpeg
    • audio/mp3
    • audio/wav
    • image/png
    • image/jpeg
    • image/webp
    • text/plain
    • video/mov
    • video/mpeg
    • video/mp4
    • video/mpg
    • video/avi
    • video/wmv
    • video/mpegps
    • video/flv
  • TEXT: le istruzioni di testo da includere nel prompt. Ad esempio: What is in the video?

Per inviare la richiesta, scegli una delle seguenti opzioni:

curl

Salva il corpo della richiesta in un file denominato request.json. Esegui questo comando nel terminale per creare o sovrascrivere questo file nella directory corrente:

cat > request.json << 'EOF'
{
  "contents": {
    "role": "USER",
    "parts": [
      {
        "fileData": {
          "fileUri": "FILE_URI",
          "mimeType": "MIME_TYPE"
        }
      },
      {
        "text": "TEXT"
      }
    ]
  }
}
EOF

Quindi, esegui il seguente comando per inviare la richiesta REST:

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/publishers/google/models/gemini-1.5-flash:generateContent"

PowerShell

Salva il corpo della richiesta in un file denominato request.json. Esegui questo comando nel terminale per creare o sovrascrivere questo file nella directory corrente:

@'
{
  "contents": {
    "role": "USER",
    "parts": [
      {
        "fileData": {
          "fileUri": "FILE_URI",
          "mimeType": "MIME_TYPE"
        }
      },
      {
        "text": "TEXT"
      }
    ]
  }
}
'@  | Out-File -FilePath request.json -Encoding utf8

Quindi, esegui il seguente comando per inviare la richiesta REST:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/publishers/google/models/gemini-1.5-flash:generateContent" | Select-Object -Expand Content

Dovresti ricevere una risposta JSON simile alla seguente.

Tieni presente quanto segue nell'URL di questo esempio:
  • Utilizza il metodo generateContent per richiedere che la risposta venga restituita dopo essere stata completamente generata. Per ridurre la percezione della latenza da parte di un pubblico di persone, riproduci in streaming la risposta man mano che viene generata utilizzando il metodo streamGenerateContent.
  • L'ID del modello multimodale si trova alla fine dell'URL prima del metodo (ad esempio gemini-1.5-flash o gemini-1.0-pro-vision). Questo sample potrebbe supportare anche altri modelli.

Console

Per inviare un prompt multimodale utilizzando la console Google Cloud , segui questi passaggi:

  1. Nella sezione Vertex AI della console Google Cloud , vai alla pagina Vertex AI Studio.

    Vai a Vertex AI Studio

  2. Fai clic su Apri in formato libero.

  3. (Facoltativo) Configura il modello e i parametri:

    • Modello: seleziona un modello.
    • Regione: seleziona la regione che vuoi utilizzare.
    • Temperatura: utilizza il dispositivo di scorrimento o la casella di testo per inserire un valore per la temperatura.

      La temperatura viene utilizzata per il campionamento durante la generazione della risposta, che si verifica quando vengono applicati topP e topK. La temperatura controlla il grado di casualità nella selezione dei token. Le temperature più basse sono ideali per prompt che richiedono risposte meno aperte o creative, mentre le temperature più alte possono portare a risultati più diversificati o creativi. Con una temperatura pari a 0 viene sempre selezionato il token con la probabilità più alta. In questo caso, le risposte per un determinato prompt sono per lo più deterministiche, ma è comunque possibile una piccola variazione.

      Se il modello restituisce una risposta troppo generica, troppo breve o fornisce una risposta di riserva, prova ad aumentare la temperatura.

    • Limite di token di output: utilizza il cursore o la casella di testo per inserire un valore per il limite di output massimo.

      Numero massimo di token che possono essere generati nella risposta. Un token equivale a circa quattro caratteri. 100 token corrispondono a circa 60-80 parole.

      Specifica un valore più basso per risposte più brevi e un valore più alto per risposte potenzialmente più lunghe.

    • Aggiungi sequenza di interruzioni: facoltativo. Inserisci una sequenza di interruzioni, ovvero una serie di caratteri che include spazi. Se il modello rileva una sequenza di interruzione, la generazione di risposte viene interrotta. La sequenza di interruzioni non è inclusa nella risposta e puoi aggiungerne fino a cinque.

  4. (Facoltativo) Per configurare i parametri avanzati, fai clic su Avanzate e configura come segue:

    Fai clic per espandere le configurazioni avanzate

    • Top-K: utilizza il dispositivo di scorrimento o la casella di testo per inserire un valore per il top-K. (non supportato per Gemini 1.5).

      Top-K cambia il modo in cui il modello seleziona i token per l'output. Un top-K pari a 1 indica che il token successivo selezionato è il più probabile tra tutti i token nel vocabolario del modello (chiamato anche decodifica greedy). Un top-K pari a 3 indica invece che il token successivo viene selezionato tra i tre token più probabili utilizzando la temperatura.

      Per ogni fase di selezione dei token, vengono campionati i token Top-K con le probabilità più elevate. Quindi i token vengono ulteriormente filtrati in base a Top-P e il token finale viene selezionato utilizzando il campionamento con temperatura.

      Specifica un valore più basso per risposte meno casuali e un valore più alto per risposte più casuali.

    • Top-P: utilizza il dispositivo di scorrimento o la casella di testo per inserire un valore per il top-P. I token vengono selezionati dal più probabile al meno probabile finché la somma delle loro probabilità non corrisponde al valore di Top-P. Per ridurre al minimo la variabilità dei risultati, imposta Top-P su 0.
    • Risposte massime: utilizza il cursore o la casella di testo per inserire un valore per il numero di risposte da generare.
    • Risposte dinamiche: attiva questa opzione per stampare le risposte man mano che vengono generate.
    • Soglia del filtro di sicurezza: seleziona la soglia di probabilità di ricevere risposte potenzialmente dannose.
    • Abilita il grounding: il grounding non è supportato per i prompt multimodali.

  5. Fai clic su Inserisci media e seleziona un'origine per il file.

    Carica

    Seleziona il file che vuoi caricare e fai clic su Apri.

    Tramite URL

    Inserisci l'URL del file che vuoi utilizzare e fai clic su Inserisci.

    YouTube

    Inserisci l'URL del video di YouTube che vuoi utilizzare e fai clic su Inserisci.

    Puoi utilizzare qualsiasi video pubblico o un video di proprietà dell'account che hai utilizzato per accedere alla console Google Cloud .

    Cloud Storage

    Seleziona il bucket e poi il file al suo interno che vuoi importare e fai clic su Seleziona.

    Google Drive

    1. Scegli un account e concedi il consenso a Vertex AI Studio per accedere al tuo account la prima volta che selezioni questa opzione. Puoi caricare più file con una dimensione totale massima di 10 MB. Un singolo file non può superare 7 MB.
    2. Fai clic sul file che vuoi aggiungere.
    3. Fai clic su Seleziona.

      La miniatura del file viene visualizzata nel riquadro Prompt. Viene mostrato anche il numero totale di token. Se i dati del prompt superano il limite di token, i token vengono troncati e non sono inclusi nell'elaborazione dei dati.

  6. Inserisci il prompt di testo nel riquadro Prompt.

  7. (Facoltativo) Per visualizzare ID token in testo e ID token, fai clic sul conteggio token nel riquadro Prompt.

  8. Fai clic su Invia.

  9. (Facoltativo) Per salvare il prompt in I miei prompt, fai clic su Salva.

  10. (Facoltativo) Per ottenere il codice Python o un comando curl per il tuo prompt, fai clic su Genera codice.

Video con audio

Di seguito viene mostrato come riassumere un file video con audio e restituire i capitoli con i timestamp. Questo esempio funziona solo con Gemini 1.5 Pro.

Python

Per scoprire come installare o aggiornare l'SDK Vertex AI per Python, consulta Installare l'SDK Vertex AI per Python. Per ulteriori informazioni, consulta la documentazione di riferimento dell'API Vertex AI SDK for Python.

Risposte dinamiche e non dinamiche

Puoi scegliere se il modello genera risposte in streaming o non in streaming. Per le risposte dinamiche, ricevi ogni risposta non appena viene generato il token di output. Per le risposte non dinamiche, ricevi tutte le risposte dopo la generazione di tutti i token di output.

Per una risposta dinamica, utilizza il parametro stream in generate_content.

  response = model.generate_content(contents=[...], stream = True)
  

Per una risposta non in streaming, rimuovi il parametro o impostalo su False.

Codice di esempio


import vertexai
from vertexai.generative_models import GenerativeModel, Part

# TODO(developer): Update and un-comment below line
# PROJECT_ID = "your-project-id"

vertexai.init(project=PROJECT_ID, location="us-central1")

model = GenerativeModel("gemini-1.5-flash-002")

prompt = """
Provide a description of the video.
The description should also contain anything important which people say in the video.
"""

video_file = Part.from_uri(
    uri="gs://cloud-samples-data/generative-ai/video/pixel8.mp4",
    mime_type="video/mp4",
)

contents = [video_file, prompt]

response = model.generate_content(contents)
print(response.text)
# Example response:
# Here is a description of the video.
# ... Then, the scene changes to a woman named Saeko Shimada..
# She says, "Tokyo has many faces. The city at night is totally different
# from what you see during the day."
# ...

Java

Prima di provare questo esempio, segui le istruzioni di configurazione di Java nella guida rapida di Vertex AI. Per ulteriori informazioni, consulta la documentazione di riferimento dell'SDK Java Vertex AI per Gemini.

Per autenticarti in Vertex AI, configura le credenziali predefinite dell'applicazione. Per maggiori informazioni, vedi Configurare l'ADC per un ambiente di sviluppo locale.

Risposte dinamiche e non dinamiche

Puoi scegliere se il modello genera risposte in streaming o non in streaming. Per le risposte dinamiche, ricevi ogni risposta non appena viene generato il token di output. Per le risposte non dinamiche, ricevi tutte le risposte dopo la generazione di tutti i token di output.

Per una risposta dinamica, utilizza il metodo generateContentStream.

  public ResponseStream<GenerateContentResponse> generateContentStream(Content content)
  

Per una risposta non in streaming, utilizza il metodo generateContent.

  public GenerateContentResponse generateContent(Content content)
  

Codice di esempio


import com.google.cloud.vertexai.VertexAI;
import com.google.cloud.vertexai.api.GenerateContentResponse;
import com.google.cloud.vertexai.generativeai.ContentMaker;
import com.google.cloud.vertexai.generativeai.GenerativeModel;
import com.google.cloud.vertexai.generativeai.PartMaker;
import com.google.cloud.vertexai.generativeai.ResponseHandler;
import java.io.IOException;

public class VideoInputWithAudio {

  public static void main(String[] args) throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "your-google-cloud-project-id";
    String location = "us-central1";
    String modelName = "gemini-1.5-flash-001";

    videoAudioInput(projectId, location, modelName);
  }

  // Analyzes the given video input, including its audio track.
  public static String videoAudioInput(String projectId, String location, String modelName)
      throws IOException {
    // Initialize client that will be used to send requests. This client only needs
    // to be created once, and can be reused for multiple requests.
    try (VertexAI vertexAI = new VertexAI(projectId, location)) {
      String videoUri = "gs://cloud-samples-data/generative-ai/video/pixel8.mp4";

      GenerativeModel model = new GenerativeModel(modelName, vertexAI);
      GenerateContentResponse response = model.generateContent(
          ContentMaker.fromMultiModalData(
              "Provide a description of the video.\n The description should also "
                  + "contain anything important which people say in the video.",
              PartMaker.fromMimeTypeAndData("video/mp4", videoUri)
          ));

      String output = ResponseHandler.getText(response);
      System.out.println(output);

      return output;
    }
  }
}

Node.js

Prima di provare questo esempio, segui le istruzioni di configurazione di Node.js nella guida rapida all'IA generativa con l'SDK Node.js. Per ulteriori informazioni, consulta la documentazione di riferimento dell'SDK Node.js per Gemini.

Per autenticarti in Vertex AI, configura le credenziali predefinite dell'applicazione. Per maggiori informazioni, vedi Configurare l'ADC per un ambiente di sviluppo locale.

Risposte dinamiche e non dinamiche

Puoi scegliere se il modello genera risposte in streaming o non in streaming. Per le risposte dinamiche, ricevi ogni risposta non appena viene generato il token di output. Per le risposte non dinamiche, ricevi tutte le risposte dopo la generazione di tutti i token di output.

Per una risposta dinamica, utilizza il metodo generateContentStream.

  const streamingResp = await generativeModel.generateContentStream(request);
  

Per una risposta non in streaming, utilizza il metodo generateContent.

  const streamingResp = await generativeModel.generateContent(request);
  

Codice di esempio

const {VertexAI} = require('@google-cloud/vertexai');

/**
 * TODO(developer): Update these variables before running the sample.
 */
async function analyze_video_with_audio(projectId = 'PROJECT_ID') {
  const vertexAI = new VertexAI({project: projectId, location: 'us-central1'});

  const generativeModel = vertexAI.getGenerativeModel({
    model: 'gemini-1.5-flash-001',
  });

  const filePart = {
    file_data: {
      file_uri: 'gs://cloud-samples-data/generative-ai/video/pixel8.mp4',
      mime_type: 'video/mp4',
    },
  };
  const textPart = {
    text: `
    Provide a description of the video.
    The description should also contain anything important which people say in the video.`,
  };

  const request = {
    contents: [{role: 'user', parts: [filePart, textPart]}],
  };

  const resp = await generativeModel.generateContent(request);
  const contentResponse = await resp.response;
  console.log(JSON.stringify(contentResponse));
}

Go

Prima di provare questo esempio, segui le istruzioni di configurazione di Go nella guida introduttiva di Vertex AI. Per ulteriori informazioni, consulta la documentazione di riferimento dell'SDK Go di Vertex AI per Gemini.

Per autenticarti a Vertex AI, configura le Credenziali predefinite dell'applicazione. Per maggiori informazioni, vedi Configurare l'ADC per un ambiente di sviluppo locale.

Risposte dinamiche e non dinamiche

Puoi scegliere se il modello genera risposte in streaming o non in streaming. Per le risposte dinamiche, ricevi ogni risposta non appena viene generato il token di output. Per le risposte non dinamiche, ricevi tutte le risposte dopo la generazione di tutti i token di output.

Per una risposta dinamica, utilizza il metodo GenerateContentStream.

  iter := model.GenerateContentStream(ctx, genai.Text("Tell me a story about a lumberjack and his giant ox. Keep it very short."))
  

Per una risposta non in streaming, utilizza il metodo GenerateContent.

  resp, err := model.GenerateContent(ctx, genai.Text("What is the average size of a swallow?"))
  

Codice di esempio

import (
	"context"
	"errors"
	"fmt"
	"io"
	"mime"
	"path/filepath"

	"cloud.google.com/go/vertexai/genai"
)

// generateMultimodalContent shows how to send video and text prompts to a model, writing the response to
// the provided io.Writer.
func generateMultimodalContent(w io.Writer, projectID, location, modelName string) error {
	// location := "us-central1"
	// modelName := "gemini-1.5-flash-001"
	ctx := context.Background()

	client, err := genai.NewClient(ctx, projectID, location)
	if err != nil {
		return fmt.Errorf("unable to create client: %w", err)
	}
	defer client.Close()

	model := client.GenerativeModel(modelName)

	// Given a video file URL, prepare video file as genai.Part
	part := genai.FileData{
		MIMEType: mime.TypeByExtension(filepath.Ext("pixel8.mp4")),
		FileURI:  "gs://cloud-samples-data/generative-ai/video/pixel8.mp4",
	}

	res, err := model.GenerateContent(ctx, part, genai.Text(`
			Provide a description of the video.
			The description should also contain anything important which people say in the video.
	`))
	if err != nil {
		return fmt.Errorf("unable to generate contents: %w", err)
	}

	if len(res.Candidates) == 0 ||
		len(res.Candidates[0].Content.Parts) == 0 {
		return errors.New("empty response from model")
	}

	fmt.Fprintf(w, "generated response: %s\n", res.Candidates[0].Content.Parts[0])
	return nil
}

C#

Prima di provare questo esempio, segui le istruzioni di configurazione di C# nella guida rapida di Vertex AI. Per ulteriori informazioni, consulta la documentazione di riferimento C# di Vertex AI.

Per autenticarti in Vertex AI, configura le credenziali predefinite dell'applicazione. Per maggiori informazioni, vedi Configurare l'ADC per un ambiente di sviluppo locale.

Risposte dinamiche e non dinamiche

Puoi scegliere se il modello genera risposte in streaming o non in streaming. Per le risposte dinamiche, ricevi ogni risposta non appena viene generato il token di output. Per le risposte non dinamiche, ricevi tutte le risposte dopo la generazione di tutti i token di output.

Per una risposta dinamica, utilizza il metodo StreamGenerateContent.

  public virtual PredictionServiceClient.StreamGenerateContentStream StreamGenerateContent(GenerateContentRequest request)
  

Per una risposta non in streaming, utilizza il metodo GenerateContentAsync.

  public virtual Task<GenerateContentResponse> GenerateContentAsync(GenerateContentRequest request)
  

Per ulteriori informazioni su come il server può trasmettere le risposte in streaming, consulta RPC in streaming.

Codice di esempio


using Google.Cloud.AIPlatform.V1;
using System;
using System.Threading.Tasks;

public class VideoInputWithAudio
{
    public async Task<string> DescribeVideo(
        string projectId = "your-project-id",
        string location = "us-central1",
        string publisher = "google",
        string model = "gemini-1.5-flash-001")
    {

        var predictionServiceClient = new PredictionServiceClientBuilder
        {
            Endpoint = $"{location}-aiplatform.googleapis.com"
        }.Build();

        string prompt = @"Provide a description of the video.
The description should also contain anything important which people say in the video.";

        var generateContentRequest = new GenerateContentRequest
        {
            Model = $"projects/{projectId}/locations/{location}/publishers/{publisher}/models/{model}",
            Contents =
            {
                new Content
                {
                    Role = "USER",
                    Parts =
                    {
                        new Part { Text = prompt },
                        new Part { FileData = new() { MimeType = "video/mp4", FileUri = "gs://cloud-samples-data/generative-ai/video/pixel8.mp4" }}
                    }
                }
            }
        };

        GenerateContentResponse response = await predictionServiceClient.GenerateContentAsync(generateContentRequest);

        string responseText = response.Candidates[0].Content.Parts[0].Text;
        Console.WriteLine(responseText);

        return responseText;
    }
}

REST

Dopo aver configurato l'ambiente, puoi utilizzare REST per testare un prompt di testo. Il seguente esempio invia una richiesta all'endpoint del modello del publisher.

Prima di utilizzare i dati della richiesta, apporta le seguenti sostituzioni:

  • LOCATION: la regione in cui elaborare la richiesta. Inserisci una regione supportata. Per l'elenco completo delle regioni supportate, consulta Località disponibili.

    Fai clic per espandere un elenco parziale delle regioni disponibili

    • us-central1
    • us-west4
    • northamerica-northeast1
    • us-east4
    • us-west1
    • asia-northeast3
    • asia-southeast1
    • asia-northeast1
  • PROJECT_ID: il tuo ID progetto.
  • FILE_URI: l'URI o l'URL del file da includere nel prompt. I valori accettabili sono:
    • URI del bucket Cloud Storage: l'oggetto deve essere leggibile pubblicamente o trovarsi nello stesso progetto Google Cloud che invia la richiesta. Per gemini-1.5-pro e gemini-1.5-flash, il limite di dimensioni è 2 GB. Per gemini-1.0-pro-vision, il limite di dimensioni è 20 MB.
    • URL HTTP:l'URL del file deve essere pubblicamente leggibile. Puoi specificare un file video, un file audio e fino a 10 file immagine per richiesta. I file audio, i file video e i documenti non possono superare i 15 MB.
    • URL del video di YouTube: il video di YouTube deve essere di proprietà dell'account che hai utilizzato per accedere alla console Google Cloud o essere pubblico. È supportato un solo URL video di YouTube per richiesta.

    Quando specifichi un fileURI, devi specificare anche il tipo di media (mimeType) del file. Se i Controlli di servizio VPC sono abilitati, la specifica di un URL di file multimediale per fileURI non è supportata.

    Se non hai un file video in Cloud Storage, puoi utilizzare il seguente file disponibile pubblicamente: gs://cloud-samples-data/generative-ai/video/pixel8.mp4 con un tipo MIME di video/mp4. Per visualizzare questo video, apri il file MP4 di esempio.

  • MIME_TYPE: il tipo di media del file specificato nei campi data o fileUri. I valori accettati sono:

    Fai clic per espandere i tipi MIME

    • application/pdf
    • audio/mpeg
    • audio/mp3
    • audio/wav
    • image/png
    • image/jpeg
    • image/webp
    • text/plain
    • video/mov
    • video/mpeg
    • video/mp4
    • video/mpg
    • video/avi
    • video/wmv
    • video/mpegps
    • video/flv
  • TEXT
    Le istruzioni di testo da includere nel prompt. Ad esempio: Provide a description of the video. The description should also contain anything important which people say in the video.

Per inviare la richiesta, scegli una delle seguenti opzioni:

curl

Salva il corpo della richiesta in un file denominato request.json. Esegui questo comando nel terminale per creare o sovrascrivere questo file nella directory corrente:

cat > request.json << 'EOF'
{
  "contents": {
    "role": "USER",
    "parts": [
      {
        "fileData": {
          "fileUri": "FILE_URI",
          "mimeType": "MIME_TYPE"
        }
      },
      {
        "text": "TEXT"
      }
    ]
  }
}
EOF

Quindi, esegui il seguente comando per inviare la richiesta REST:

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/publishers/google/models/gemini-1.5-flash:generateContent"

PowerShell

Salva il corpo della richiesta in un file denominato request.json. Esegui questo comando nel terminale per creare o sovrascrivere questo file nella directory corrente:

@'
{
  "contents": {
    "role": "USER",
    "parts": [
      {
        "fileData": {
          "fileUri": "FILE_URI",
          "mimeType": "MIME_TYPE"
        }
      },
      {
        "text": "TEXT"
      }
    ]
  }
}
'@  | Out-File -FilePath request.json -Encoding utf8

Quindi, esegui il seguente comando per inviare la richiesta REST:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/publishers/google/models/gemini-1.5-flash:generateContent" | Select-Object -Expand Content

Dovresti ricevere una risposta JSON simile alla seguente.

Tieni presente quanto segue nell'URL di questo esempio:
  • Utilizza il metodo generateContent per richiedere che la risposta venga restituita dopo essere stata completamente generata. Per ridurre la percezione della latenza da parte di un pubblico di persone, riproduci in streaming la risposta man mano che viene generata utilizzando il metodo streamGenerateContent.
  • L'ID del modello multimodale si trova alla fine dell'URL prima del metodo (ad esempio gemini-1.5-flash o gemini-1.0-pro-vision). Questo sample potrebbe supportare anche altri modelli.

Console

Per inviare un prompt multimodale utilizzando la console Google Cloud , segui questi passaggi:

  1. Nella sezione Vertex AI della console Google Cloud , vai alla pagina Vertex AI Studio.

    Vai a Vertex AI Studio

  2. Fai clic su Apri in formato libero.

  3. (Facoltativo) Configura il modello e i parametri:

    • Modello: seleziona un modello.
    • Regione: seleziona la regione che vuoi utilizzare.
    • Temperatura: utilizza il dispositivo di scorrimento o la casella di testo per inserire un valore per la temperatura.

      La temperatura viene utilizzata per il campionamento durante la generazione della risposta, che si verifica quando vengono applicati topP e topK. La temperatura controlla il grado di casualità nella selezione dei token. Le temperature più basse sono ideali per prompt che richiedono risposte meno aperte o creative, mentre le temperature più alte possono portare a risultati più diversificati o creativi. Con una temperatura pari a 0 viene sempre selezionato il token con la probabilità più alta. In questo caso, le risposte per un determinato prompt sono per lo più deterministiche, ma è comunque possibile una piccola variazione.

      Se il modello restituisce una risposta troppo generica, troppo breve o fornisce una risposta di riserva, prova ad aumentare la temperatura.

    • Limite di token di output: utilizza il cursore o la casella di testo per inserire un valore per il limite di output massimo.

      Numero massimo di token che possono essere generati nella risposta. Un token equivale a circa quattro caratteri. 100 token corrispondono a circa 60-80 parole.

      Specifica un valore più basso per risposte più brevi e un valore più alto per risposte potenzialmente più lunghe.

    • Aggiungi sequenza di interruzioni: facoltativo. Inserisci una sequenza di interruzioni, ovvero una serie di caratteri che include spazi. Se il modello rileva una sequenza di interruzione, la generazione di risposte viene interrotta. La sequenza di interruzioni non è inclusa nella risposta e puoi aggiungerne fino a cinque.

  4. (Facoltativo) Per configurare i parametri avanzati, fai clic su Avanzate e configura come segue:

    Fai clic per espandere le configurazioni avanzate

    • Top-K: utilizza il dispositivo di scorrimento o la casella di testo per inserire un valore per il top-K. (non supportato per Gemini 1.5).

      Top-K cambia il modo in cui il modello seleziona i token per l'output. Un top-K pari a 1 indica che il token successivo selezionato è il più probabile tra tutti i token nel vocabolario del modello (chiamato anche decodifica greedy). Un top-K pari a 3 indica invece che il token successivo viene selezionato tra i tre token più probabili utilizzando la temperatura.

      Per ogni fase di selezione dei token, vengono campionati i token Top-K con le probabilità più elevate. Quindi i token vengono ulteriormente filtrati in base a Top-P e il token finale viene selezionato utilizzando il campionamento con temperatura.

      Specifica un valore più basso per risposte meno casuali e un valore più alto per risposte più casuali.

    • Top-P: utilizza il dispositivo di scorrimento o la casella di testo per inserire un valore per il top-P. I token vengono selezionati dal più probabile al meno probabile finché la somma delle loro probabilità non corrisponde al valore di Top-P. Per ridurre al minimo la variabilità dei risultati, imposta Top-P su 0.
    • Risposte massime: utilizza il cursore o la casella di testo per inserire un valore per il numero di risposte da generare.
    • Risposte dinamiche: attiva questa opzione per stampare le risposte man mano che vengono generate.
    • Soglia del filtro di sicurezza: seleziona la soglia di probabilità di ricevere risposte potenzialmente dannose.
    • Abilita il grounding: il grounding non è supportato per i prompt multimodali.

  5. Fai clic su Inserisci media e seleziona un'origine per il file.

    Carica

    Seleziona il file che vuoi caricare e fai clic su Apri.

    Tramite URL

    Inserisci l'URL del file che vuoi utilizzare e fai clic su Inserisci.

    YouTube

    Inserisci l'URL del video di YouTube che vuoi utilizzare e fai clic su Inserisci.

    Puoi utilizzare qualsiasi video pubblico o un video di proprietà dell'account che hai utilizzato per accedere alla console Google Cloud .

    Cloud Storage

    Seleziona il bucket e poi il file al suo interno che vuoi importare e fai clic su Seleziona.

    Google Drive

    1. Scegli un account e concedi il consenso a Vertex AI Studio per accedere al tuo account la prima volta che selezioni questa opzione. Puoi caricare più file con una dimensione totale massima di 10 MB. Un singolo file non può superare 7 MB.
    2. Fai clic sul file che vuoi aggiungere.
    3. Fai clic su Seleziona.

      La miniatura del file viene visualizzata nel riquadro Prompt. Viene mostrato anche il numero totale di token. Se i dati del prompt superano il limite di token, i token vengono troncati e non sono inclusi nell'elaborazione dei dati.

  6. Inserisci il prompt di testo nel riquadro Prompt.

  7. (Facoltativo) Per visualizzare ID token in testo e ID token, fai clic sul conteggio token nel riquadro Prompt.

  8. Fai clic su Invia.

  9. (Facoltativo) Per salvare il prompt in I miei prompt, fai clic su Salva.

  10. (Facoltativo) Per ottenere il codice Python o un comando curl per il tuo prompt, fai clic su Genera codice.

Impostare i parametri facoltativi del modello

Ogni modello ha un insieme di parametri facoltativi che puoi impostare. Per ulteriori informazioni, consulta Parametri di generazione dei contenuti.

Requisiti dei video

I modelli multimodali Gemini supportano i seguenti tipi MIME video:

Tipo MIME video Gemini 1.5 Flash Gemini 1.5 Pro Gemini 1.0 Pro Vision
FLV - video/x-flv
MOV - video/quicktime
MPEG - video/mpeg
MPEGPS - video/mpegps
MPG - video/mpg
MP4 - video/mp4
WEBM - video/webm
WMV - video/wmv
3GPP - video/3gpp

Ecco il numero massimo di file video consentiti in una richiesta di prompt:

  • Gemini 1.0 Pro Vision: 1 file video
  • Gemini 1.5 Flash e Gemini 1.5 Pro: 10 file video

Ecco come vengono calcolati i token per i video:

  • Tutti i modelli multimodali Gemini: i video vengono campionati a 1 frame al secondo (fps). Ogni fotogramma video corrisponde a 258 token.
  • Gemini 1.5 Flash e Gemini 1.5 Pro: la traccia audio viene codificata con i frame video. La traccia audio è suddivisa anche in trunk di 1 secondo, ciascuno dei quali corrisponde a 32 token. I frame video e i token audio vengono interlacciati insieme ai relativi timestamp. I timestamp sono rappresentati come 7 token.

Best practice

Quando utilizzi i video, segui le best practice e le informazioni riportate di seguito per ottenere risultati ottimali:

  • Se il prompt contiene un singolo video, posizionalo prima del prompt di testo.
  • Se hai bisogno di localizzazione dei timestamp in un video con audio, chiedi al modello di generare timestamp nel formato MM:SS, in cui le prime due cifre rappresentano i minuti e le ultime due i secondi. Utilizza lo stesso formato per le domande che richiedono un timestamp.
  • Tieni presente quanto segue se utilizzi Gemini 1.0 Pro Vision:

    • Non utilizzare più di un video per prompt.
    • Il modello elabora solo le informazioni dei primi due minuti del video.
    • Il modello elabora i video come frame immagine non contigui del video. L'audio non è incluso. Se noti che al modello mancano alcuni contenuti del video, prova a renderlo più breve in modo che possa acquisire una porzione maggiore dei contenuti.
    • Il modello non elabora informazioni audio o metadati relativi al timestamp. Per questo motivo, il modello potrebbe non funzionare bene nei casi d'uso che richiedono input audio, ad esempio i sottotitoli codificati, o informazioni relative al tempo, ad esempio velocità o ritmo.

Limitazioni

Sebbene i modelli multimodali di Gemini siano efficaci in molti casi di utilizzo multimodale, è importante comprendere i loro limiti:

  • Moderazione dei contenuti: i modelli rifiutano di fornire risposte su video che violano le nostre norme sulla sicurezza.
  • Riconoscimento di suoni non vocali: i modelli che supportano l'audio potrebbero commettere errori nel riconoscere i suoni non vocali.
  • Movimento ad alta velocità: i modelli potrebbero commettere errori nell'interpretare il movimento ad alta velocità nei video a causa della frequenza di sampling fissa di 1 frame al secondo (fps).
  • Puntuazione della trascrizione: (se utilizzi Gemini 1.5 Flash) I modelli potrebbero restituire trascrizioni che non includono la punteggiatura.

Passaggi successivi