Pemahaman gambar

Anda dapat menambahkan gambar ke permintaan Gemini untuk melakukan tugas yang melibatkan pemahaman konten gambar yang disertakan. Halaman ini menunjukkan cara menambahkan gambar ke permintaan Anda ke Gemini di Vertex AI menggunakan konsol Google Cloud dan Vertex AI API.

Model yang didukung

Tabel berikut mencantumkan model yang mendukung pemahaman gambar:

Model Detail modalitas gambar

Gemini 1.5 Flash

Buka kartu model Gemini 1.5 Flash
Gambar maksimum per dialog: 3.000

Gemini 1.5 Pro

Buka kartu model Gemini 1.5 Pro
Gambar maksimum per dialog: 3.000

Gemini 1.0 Pro Vision

Buka kartu model Gemini 1.0 Pro Vision
Gambar maksimum per perintah: 16

Untuk mengetahui daftar bahasa yang didukung oleh model Gemini, lihat informasi model model Google. Untuk mempelajari lebih lanjut cara mendesain perintah multimodal, lihat Mendesain perintah multimodal. Jika Anda mencari cara untuk menggunakan Gemini langsung dari aplikasi seluler dan web, lihat Vertex AI di Firebase SDK untuk aplikasi Android, Swift, web, dan Flutter.

Menambahkan gambar ke permintaan

Anda dapat menambahkan satu gambar atau beberapa gambar dalam permintaan ke Gemini.

Satu gambar

Kode contoh di setiap tab berikut menunjukkan cara yang berbeda untuk mengidentifikasi apa yang ada dalam gambar. Contoh ini berfungsi dengan semua model multimodal Gemini.

Python

Untuk mempelajari cara menginstal atau mengupdate Vertex AI SDK untuk Python, lihat Menginstal Vertex AI SDK untuk Python. Untuk mengetahui informasi selengkapnya, lihat dokumentasi referensi API Vertex AI SDK untuk Python.

Respons streaming dan non-streaming

Anda dapat memilih apakah model menghasilkan respons streaming atau respons non-streaming. Untuk respons streaming, Anda akan menerima setiap respons segera setelah token output-nya dibuat. Untuk respons non-streaming, Anda akan menerima semua respons setelah semua token output dibuat.

Untuk respons streaming, gunakan parameter stream di generate_content.

  response = model.generate_content(contents=[...], stream = True)
  

Untuk respons non-streaming, hapus parameter, atau tetapkan parameter ke False.

Kode contoh

import vertexai

from vertexai.generative_models import GenerativeModel, Part

# TODO(developer): Update and un-comment below line
# PROJECT_ID = "your-project-id"
vertexai.init(project=PROJECT_ID, location="us-central1")

model = GenerativeModel("gemini-1.5-flash-002")

image_file = Part.from_uri(
    "gs://cloud-samples-data/generative-ai/image/scones.jpg", "image/jpeg"
)

# Query the model
response = model.generate_content([image_file, "what is this image?"])
print(response.text)
# Example response:
# That's a lovely overhead flatlay photograph of blueberry scones.
# The image features:
# * **Several blueberry scones:** These are the main focus,
# arranged on parchment paper with some blueberry juice stains.
# ...

Java

Sebelum mencoba contoh ini, ikuti petunjuk penyiapan Java di panduan memulai Vertex AI. Untuk mengetahui informasi selengkapnya, lihat dokumentasi referensi Vertex AI Java SDK untuk Gemini.

Untuk melakukan autentikasi ke Vertex AI, siapkan Kredensial Default Aplikasi. Untuk informasi selengkapnya, lihat Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

Respons streaming dan non-streaming

Anda dapat memilih apakah model menghasilkan respons streaming atau respons non-streaming. Untuk respons streaming, Anda akan menerima setiap respons segera setelah token output-nya dibuat. Untuk respons non-streaming, Anda akan menerima semua respons setelah semua token output dibuat.

Untuk respons streaming, gunakan metode generateContentStream.

  public ResponseStream<GenerateContentResponse> generateContentStream(Content content)
  

Untuk respons non-streaming, gunakan metode generateContent.

  public GenerateContentResponse generateContent(Content content)
  

Kode contoh

import com.google.cloud.vertexai.VertexAI;
import com.google.cloud.vertexai.api.GenerateContentResponse;
import com.google.cloud.vertexai.generativeai.ContentMaker;
import com.google.cloud.vertexai.generativeai.GenerativeModel;
import com.google.cloud.vertexai.generativeai.PartMaker;
import com.google.cloud.vertexai.generativeai.ResponseHandler;
import java.util.Base64;

public class MultimodalQuery {

  public static void main(String[] args) throws Exception {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "your-google-cloud-project-id";
    String location = "us-central1";
    String modelName = "gemini-1.5-flash-001";
    String dataImageBase64 = "your-base64-encoded-image";

    String output = multimodalQuery(projectId, location, modelName, dataImageBase64);
    System.out.println(output);
  }


  // Ask the model to recognise the brand associated with the logo image.
  public static String multimodalQuery(String projectId, String location, String modelName,
      String dataImageBase64) throws Exception {
    // Initialize client that will be used to send requests. This client only needs
    // to be created once, and can be reused for multiple requests.
    try (VertexAI vertexAI = new VertexAI(projectId, location)) {
      String output;
      byte[] imageBytes = Base64.getDecoder().decode(dataImageBase64);

      GenerativeModel model = new GenerativeModel(modelName, vertexAI);
      GenerateContentResponse response = model.generateContent(
          ContentMaker.fromMultiModalData(
              "What is this image?",
              PartMaker.fromMimeTypeAndData("image/png", imageBytes)
          ));

      output = ResponseHandler.getText(response);
      return output;
    }
  }
}

Node.js

Sebelum mencoba contoh ini, ikuti petunjuk penyiapan Node.js di Panduan memulai AI Generatif menggunakan Node.js SDK. Untuk mengetahui informasi selengkapnya, lihat dokumentasi referensi Node.js SDK untuk Gemini.

Untuk melakukan autentikasi ke Vertex AI, siapkan Kredensial Default Aplikasi. Untuk informasi selengkapnya, lihat Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

Respons streaming dan non-streaming

Anda dapat memilih apakah model menghasilkan respons streaming atau respons non-streaming. Untuk respons streaming, Anda akan menerima setiap respons segera setelah token output-nya dibuat. Untuk respons non-streaming, Anda akan menerima semua respons setelah semua token output dibuat.

Untuk respons streaming, gunakan metode generateContentStream.

  const streamingResp = await generativeModel.generateContentStream(request);
  

Untuk respons non-streaming, gunakan metode generateContent.

  const streamingResp = await generativeModel.generateContent(request);
  

Kode contoh

const {VertexAI} = require('@google-cloud/vertexai');

/**
 * TODO(developer): Update these variables before running the sample.
 */
async function createNonStreamingMultipartContent(
  projectId = 'PROJECT_ID',
  location = 'us-central1',
  model = 'gemini-1.5-flash-001',
  image = 'gs://generativeai-downloads/images/scones.jpg',
  mimeType = 'image/jpeg'
) {
  // Initialize Vertex with your Cloud project and location
  const vertexAI = new VertexAI({project: projectId, location: location});

  // Instantiate the model
  const generativeVisionModel = vertexAI.getGenerativeModel({
    model: model,
  });

  // For images, the SDK supports both Google Cloud Storage URI and base64 strings
  const filePart = {
    fileData: {
      fileUri: image,
      mimeType: mimeType,
    },
  };

  const textPart = {
    text: 'what is shown in this image?',
  };

  const request = {
    contents: [{role: 'user', parts: [filePart, textPart]}],
  };

  console.log('Prompt Text:');
  console.log(request.contents[0].parts[1].text);

  console.log('Non-Streaming Response Text:');

  // Generate a response
  const response = await generativeVisionModel.generateContent(request);

  // Select the text from the response
  const fullTextResponse =
    response.response.candidates[0].content.parts[0].text;

  console.log(fullTextResponse);
}

Go

Sebelum mencoba contoh ini, ikuti petunjuk penyiapan Go di panduan memulai Vertex AI. Untuk mengetahui informasi selengkapnya, lihat dokumentasi referensi Vertex AI Go SDK untuk Gemini.

Untuk melakukan autentikasi ke Vertex AI, siapkan Kredensial Default Aplikasi. Untuk informasi selengkapnya, lihat Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

Respons streaming dan non-streaming

Anda dapat memilih apakah model menghasilkan respons streaming atau respons non-streaming. Untuk respons streaming, Anda akan menerima setiap respons segera setelah token output-nya dibuat. Untuk respons non-streaming, Anda akan menerima semua respons setelah semua token output dibuat.

Untuk respons streaming, gunakan metode GenerateContentStream.

  iter := model.GenerateContentStream(ctx, genai.Text("Tell me a story about a lumberjack and his giant ox. Keep it very short."))
  

Untuk respons non-streaming, gunakan metode GenerateContent.

  resp, err := model.GenerateContent(ctx, genai.Text("What is the average size of a swallow?"))
  

Kode contoh

import (
	"context"
	"encoding/json"
	"fmt"
	"io"

	"cloud.google.com/go/vertexai/genai"
)

func tryGemini(w io.Writer, projectID string, location string, modelName string) error {
	// location := "us-central1"
	// modelName := "gemini-1.5-flash-001"

	ctx := context.Background()
	client, err := genai.NewClient(ctx, projectID, location)
	if err != nil {
		return fmt.Errorf("error creating client: %w", err)
	}
	gemini := client.GenerativeModel(modelName)

	img := genai.FileData{
		MIMEType: "image/jpeg",
		FileURI:  "gs://generativeai-downloads/images/scones.jpg",
	}
	prompt := genai.Text("What is in this image?")

	resp, err := gemini.GenerateContent(ctx, img, prompt)
	if err != nil {
		return fmt.Errorf("error generating content: %w", err)
	}
	rb, err := json.MarshalIndent(resp, "", "  ")
	if err != nil {
		return fmt.Errorf("json.MarshalIndent: %w", err)
	}
	fmt.Fprintln(w, string(rb))
	return nil
}

C#

Sebelum mencoba contoh ini, ikuti petunjuk penyiapan C# di panduan memulai Vertex AI. Untuk mengetahui informasi selengkapnya, lihat Dokumentasi referensi C# Vertex AI.

Untuk melakukan autentikasi ke Vertex AI, siapkan Kredensial Default Aplikasi. Untuk informasi selengkapnya, lihat Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

Respons streaming dan non-streaming

Anda dapat memilih apakah model menghasilkan respons streaming atau respons non-streaming. Untuk respons streaming, Anda akan menerima setiap respons segera setelah token output-nya dibuat. Untuk respons non-streaming, Anda akan menerima semua respons setelah semua token output dibuat.

Untuk respons streaming, gunakan metode StreamGenerateContent.

  public virtual PredictionServiceClient.StreamGenerateContentStream StreamGenerateContent(GenerateContentRequest request)
  

Untuk respons non-streaming, gunakan metode GenerateContentAsync.

  public virtual Task<GenerateContentResponse> GenerateContentAsync(GenerateContentRequest request)
  

Untuk mengetahui informasi selengkapnya tentang cara server melakukan streaming respons, lihat Streaming RPC.

Kode contoh


using Google.Api.Gax.Grpc;
using Google.Cloud.AIPlatform.V1;
using System.Text;
using System.Threading.Tasks;

public class GeminiQuickstart
{
    public async Task<string> GenerateContent(
        string projectId = "your-project-id",
        string location = "us-central1",
        string publisher = "google",
        string model = "gemini-1.5-flash-001"
    )
    {
        // Create client
        var predictionServiceClient = new PredictionServiceClientBuilder
        {
            Endpoint = $"{location}-aiplatform.googleapis.com"
        }.Build();

        // Initialize content request
        var generateContentRequest = new GenerateContentRequest
        {
            Model = $"projects/{projectId}/locations/{location}/publishers/{publisher}/models/{model}",
            GenerationConfig = new GenerationConfig
            {
                Temperature = 0.4f,
                TopP = 1,
                TopK = 32,
                MaxOutputTokens = 2048
            },
            Contents =
            {
                new Content
                {
                    Role = "USER",
                    Parts =
                    {
                        new Part { Text = "What's in this photo?" },
                        new Part { FileData = new() { MimeType = "image/png", FileUri = "gs://generativeai-downloads/images/scones.jpg" } }
                    }
                }
            }
        };

        // Make the request, returning a streaming response
        using PredictionServiceClient.StreamGenerateContentStream response = predictionServiceClient.StreamGenerateContent(generateContentRequest);

        StringBuilder fullText = new();

        // Read streaming responses from server until complete
        AsyncResponseStream<GenerateContentResponse> responseStream = response.GetResponseStream();
        await foreach (GenerateContentResponse responseItem in responseStream)
        {
            fullText.Append(responseItem.Candidates[0].Content.Parts[0].Text);
        }

        return fullText.ToString();
    }
}

REST

Setelah menyiapkan lingkungan, Anda dapat menggunakan REST untuk menguji perintah teks. Contoh berikut mengirimkan permintaan ke endpoint model penayang.

Anda dapat menyertakan gambar yang disimpan di Cloud Storage atau menggunakan data gambar yang dienkode base64.

Gambar di Cloud Storage

Sebelum menggunakan salah satu data permintaan, lakukan penggantian berikut:

  • LOCATION: Region untuk memproses permintaan. Masukkan wilayah yang didukung. Untuk mengetahui daftar lengkap region yang didukung, lihat Lokasi yang tersedia.

    Klik untuk meluaskan sebagian daftar region yang tersedia

    • us-central1
    • us-west4
    • northamerica-northeast1
    • us-east4
    • us-west1
    • asia-northeast3
    • asia-southeast1
    • asia-northeast1
  • PROJECT_ID: Project ID Anda.
  • FILE_URI: URI atau URL file yang akan disertakan dalam perintah. Nilai yang dapat diterima mencakup hal berikut:
    • URI bucket Cloud Storage: Objek harus dapat dibaca secara publik atau berada di project Google Cloud yang sama dengan yang mengirim permintaan. Untuk gemini-1.5-pro dan gemini-1.5-flash, batas ukurannya adalah 2 GB. Untuk gemini-1.0-pro-vision, batas ukurannya adalah 20 MB.
    • URL HTTP: URL file harus dapat dibaca secara publik. Anda dapat menentukan satu file video, satu file audio, dan maksimal 10 file gambar per permintaan. File audio, file video, dan dokumen tidak boleh melebihi 15 MB.
    • URL video YouTube: Video YouTube harus dimiliki oleh akun yang Anda gunakan untuk login ke konsol Google Cloud atau bersifat publik. Hanya satu URL video YouTube yang didukung per permintaan.

    Saat menentukan fileURI, Anda juga harus menentukan jenis media (mimeType) file.

    Jika tidak memiliki file gambar di Cloud Storage, Anda dapat menggunakan file berikut yang tersedia secara publik: gs://cloud-samples-data/generative-ai/image/scones.jpg dengan jenis mime image/jpeg. Untuk melihat gambar ini, buka file gambar contoh.

  • MIME_TYPE: Jenis media file yang ditentukan dalam kolom data atau fileUri. Nilai yang dapat diterima mencakup hal berikut:

    Klik untuk meluaskan jenis MIME

    • application/pdf
    • audio/mpeg
    • audio/mp3
    • audio/wav
    • image/png
    • image/jpeg
    • image/webp
    • text/plain
    • video/mov
    • video/mpeg
    • video/mp4
    • video/mpg
    • video/avi
    • video/wmv
    • video/mpegps
    • video/flv
  • TEXT: Petunjuk teks yang akan disertakan dalam perintah. Misalnya, What is shown in this image?

Untuk mengirim permintaan Anda, pilih salah satu opsi berikut:

curl

Simpan isi permintaan dalam file bernama request.json. Jalankan perintah berikut di terminal untuk membuat atau menimpa file ini di direktori saat ini:

cat > request.json << 'EOF'
{
  "contents": {
    "role": "USER",
    "parts": [
      {
        "fileData": {
          "fileUri": "FILE_URI",
          "mimeType": "MIME_TYPE"
        }
      },
      {
        "text": "TEXT"
      }
    ]
  }
}
EOF

Kemudian, jalankan perintah berikut untuk mengirim permintaan REST Anda:

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/publishers/google/models/gemini-1.5-flash:generateContent"

PowerShell

Simpan isi permintaan dalam file bernama request.json. Jalankan perintah berikut di terminal untuk membuat atau menimpa file ini di direktori saat ini:

@'
{
  "contents": {
    "role": "USER",
    "parts": [
      {
        "fileData": {
          "fileUri": "FILE_URI",
          "mimeType": "MIME_TYPE"
        }
      },
      {
        "text": "TEXT"
      }
    ]
  }
}
'@  | Out-File -FilePath request.json -Encoding utf8

Kemudian, jalankan perintah berikut untuk mengirim permintaan REST Anda:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/publishers/google/models/gemini-1.5-flash:generateContent" | Select-Object -Expand Content

Anda akan menerima respons JSON yang mirip dengan berikut ini.

Data gambar Base64

Sebelum menggunakan salah satu data permintaan, lakukan penggantian berikut:

  • LOCATION: Region untuk memproses permintaan. Masukkan wilayah yang didukung. Untuk mengetahui daftar lengkap region yang didukung, lihat Lokasi yang tersedia.

    Klik untuk meluaskan sebagian daftar region yang tersedia

    • us-central1
    • us-west4
    • northamerica-northeast1
    • us-east4
    • us-west1
    • asia-northeast3
    • asia-southeast1
    • asia-northeast1
  • PROJECT_ID: Project ID Anda.
  • B64_BASE_IMAGE
    Encoding base64 gambar, PDF, atau video untuk disertakan secara inline dalam perintah. Saat menyertakan media secara inline, Anda juga harus menentukan jenis media (mimeType) data.
  • MIME_TYPE: Jenis media file yang ditentukan dalam kolom data atau fileUri. Nilai yang dapat diterima mencakup hal berikut:

    Klik untuk meluaskan jenis MIME

    • application/pdf
    • audio/mpeg
    • audio/mp3
    • audio/wav
    • image/png
    • image/jpeg
    • image/webp
    • text/plain
    • video/mov
    • video/mpeg
    • video/mp4
    • video/mpg
    • video/avi
    • video/wmv
    • video/mpegps
    • video/flv
  • TEXT: Petunjuk teks yang akan disertakan dalam perintah. Misalnya, What is shown in this image?.

Untuk mengirim permintaan Anda, pilih salah satu opsi berikut:

curl

Simpan isi permintaan dalam file bernama request.json. Jalankan perintah berikut di terminal untuk membuat atau menimpa file ini di direktori saat ini:

cat > request.json << 'EOF'
{
  "contents": {
    "role": "USER",
    "parts": [
      {
        "inlineData": {
          "data": "B64_BASE_IMAGE",
          "mimeType": "MIME_TYPE"
        }
      },
      {
        "text": "TEXT"
      }
    ]
  }
}
EOF

Kemudian, jalankan perintah berikut untuk mengirim permintaan REST Anda:

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/publishers/google/models/gemini-1.5-flash:generateContent"

PowerShell

Simpan isi permintaan dalam file bernama request.json. Jalankan perintah berikut di terminal untuk membuat atau menimpa file ini di direktori saat ini:

@'
{
  "contents": {
    "role": "USER",
    "parts": [
      {
        "inlineData": {
          "data": "B64_BASE_IMAGE",
          "mimeType": "MIME_TYPE"
        }
      },
      {
        "text": "TEXT"
      }
    ]
  }
}
'@  | Out-File -FilePath request.json -Encoding utf8

Kemudian, jalankan perintah berikut untuk mengirim permintaan REST Anda:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/publishers/google/models/gemini-1.5-flash:generateContent" | Select-Object -Expand Content

Anda akan menerima respons JSON yang mirip dengan berikut ini.

Perhatikan hal berikut di URL untuk contoh ini:
  • Gunakan metode generateContent untuk meminta respons ditampilkan setelah sepenuhnya dibuat. Untuk mengurangi persepsi latensi kepada audiens manusia, streaming respons saat dihasilkan menggunakan metode streamGenerateContent.
  • ID model multimodal terletak di akhir URL sebelum metode (misalnya, gemini-1.5-flash atau gemini-1.0-pro-vision). Contoh ini juga dapat mendukung model lainnya.

Konsol

Untuk mengirim perintah multimodal menggunakan konsol Google Cloud, lakukan hal berikut:

  1. Di bagian Vertex AI pada konsol Google Cloud, buka halaman Vertex AI Studio.

    Buka Vertex AI Studio

  2. Klik Open freeform.

  3. Opsional: Konfigurasi model dan parameter:

    • Model: Pilih model.
    • Region: Pilih region yang ingin Anda gunakan.
    • Suhu: Gunakan penggeser atau kotak teks untuk memasukkan nilai suhu.

      Suhu digunakan untuk pengambilan sampel selama pembuatan respons, yang terjadi saat topP dan topK diterapkan. Suhu mengontrol tingkat keacakan dalam pemilihan token. Suhu yang lebih rendah cocok untuk perintah yang memerlukan respons yang kurang terbuka atau kreatif, sedangkan suhu yang lebih tinggi dapat memberikan hasil yang lebih beragam atau kreatif. Suhu 0 berarti token probabilitas tertinggi selalu dipilih. Dalam hal ini, respons untuk permintaan tertentu sebagian besar deterministik, tetapi sedikit variasi masih dapat dilakukan.

      Jika model menampilkan respons yang terlalu umum, terlalu pendek, atau model memberikan respons pengganti, coba tingkatkan suhunya.

    • Batas token output: Gunakan penggeser atau kotak teks untuk memasukkan nilai untuk batas output maksimum.

      Jumlah maksimum token yang dapat dibuat dalam respons. Token terdiri dari sekitar empat karakter. 100 token setara dengan sekitar 60-80 kata.

      Tentukan nilai yang lebih rendah untuk respons yang lebih singkat dan nilai yang lebih tinggi untuk respons yang berpotensi lebih panjang.

    • Tambahkan urutan perhentian: Opsional. Masukkan urutan perhentian, yang merupakan rangkaian karakter yang menyertakan spasi. Jika model menemukan urutan berhenti, pembuatan respons akan berhenti. Urutan perhentian tidak disertakan dalam respons, dan Anda dapat menambahkan hingga lima urutan perhentian.

  4. Opsional: Untuk mengonfigurasi parameter lanjutan, klik Advanced dan konfigurasikan sebagai berikut:

    Klik untuk meluaskan konfigurasi lanjutan

    • Top-K: Gunakan penggeser atau kotak teks untuk memasukkan nilai untuk top-K. (tidak didukung untuk Gemini 1.5).

      Top-K mengubah cara model memilih token untuk output. Top-K 1 berarti token yang dipilih berikutnya adalah yang paling mungkin di antara semua token dalam kosakata model (juga disebut decoding greedy), sedangkan top-K 3 berarti token berikutnya dipilih di antara tiga token yang paling mungkin dengan menggunakan suhu.

      Untuk setiap langkah pemilihan token, token top-K dengan probabilitas tertinggi akan diambil sampelnya. Kemudian token akan difilter lebih lanjut berdasarkan top-P dengan token akhir yang dipilih menggunakan pengambilan sampel suhu.

      Tentukan nilai yang lebih rendah untuk respons acak yang lebih sedikit dan nilai yang lebih tinggi untuk respons acak yang lebih banyak.

    • Top-P: Gunakan penggeser atau kotak teks untuk memasukkan nilai untuk top-P. Token dipilih dari yang paling mungkin hingga yang paling tidak mungkin sampai jumlah probabilitasnya sama dengan nilai top-P. Untuk hasil yang paling sedikit variabelnya, tetapkan top-P ke 0.
    • Respons maksimum: Gunakan penggeser atau kotak teks untuk memasukkan nilai jumlah respons yang akan dihasilkan.
    • Streaming respons: Aktifkan untuk mencetak respons saat dihasilkan.
    • Nilai minimum filter keamanan: Pilih nilai minimum kemungkinan Anda melihat respons yang dapat berbahaya.
    • Aktifkan Grounding: Grounding tidak didukung untuk perintah multimodal.

  5. Klik Sisipkan Media, lalu pilih sumber untuk file Anda.

    Upload

    Pilih file yang ingin Anda upload, lalu klik Buka.

    Melalui URL

    Masukkan URL file yang ingin Anda gunakan, lalu klik Sisipkan.

    Cloud Storage

    Pilih bucket, lalu file dari bucket yang ingin Anda impor, lalu klik Select.

    Google Drive

    1. Pilih akun dan beri izin kepada Vertex AI Studio untuk mengakses akun Anda saat pertama kali Anda memilih opsi ini. Anda dapat mengupload beberapa file yang memiliki total ukuran hingga 10 MB. Satu file tidak boleh melebihi 7 MB.
    2. Klik file yang ingin Anda tambahkan.
    3. Klik Pilih.

      Thumbnail file akan ditampilkan di panel Prompt. Jumlah total token juga ditampilkan. Jika data perintah Anda melebihi batas token, token akan terpotong dan tidak disertakan dalam pemrosesan data Anda.

  6. Masukkan perintah teks Anda di panel Prompt.

  7. Opsional: Untuk melihat Token ID to text dan Token IDs, klik tokens count di panel Prompt.

  8. Klik Kirim.

  9. Opsional: Untuk menyimpan perintah Anda ke My prompts, klik Save.

  10. Opsional: Untuk mendapatkan kode Python atau perintah curl untuk perintah Anda, klik Get code.

Beberapa gambar

Setiap tab berikut menunjukkan cara yang berbeda untuk menyertakan beberapa gambar dalam permintaan perintah. Setiap sampel menggunakan dua kumpulan input berikut:

  • Gambar tempat terkenal di kota
  • Jenis media gambar
  • Teks yang menunjukkan kota dan landmark dalam gambar

Contoh ini juga mengambil gambar ketiga dan jenis media, tetapi tidak ada teks. Contoh ini menampilkan respons teks yang menunjukkan kota dan landmark di gambar ketiga.

Contoh gambar ini berfungsi dengan semua model multimodal Gemini.

Python

Untuk mempelajari cara menginstal atau mengupdate Vertex AI SDK untuk Python, lihat Menginstal Vertex AI SDK untuk Python. Untuk mengetahui informasi selengkapnya, lihat dokumentasi referensi API Vertex AI SDK untuk Python.

Respons streaming dan non-streaming

Anda dapat memilih apakah model menghasilkan respons streaming atau respons non-streaming. Untuk respons streaming, Anda akan menerima setiap respons segera setelah token output-nya dibuat. Untuk respons non-streaming, Anda akan menerima semua respons setelah semua token output dibuat.

Untuk respons streaming, gunakan parameter stream di generate_content.

  response = model.generate_content(contents=[...], stream = True)
  

Untuk respons non-streaming, hapus parameter, atau tetapkan parameter ke False.

Kode contoh

import vertexai

from vertexai.generative_models import GenerativeModel, Part

# TODO(developer): Update and un-comment below line
# PROJECT_ID = "your-project-id"
vertexai.init(project=PROJECT_ID, location="us-central1")

# Load images from Cloud Storage URI
image_file1 = Part.from_uri(
    "gs://cloud-samples-data/vertex-ai/llm/prompts/landmark1.png",
    mime_type="image/png",
)
image_file2 = Part.from_uri(
    "gs://cloud-samples-data/vertex-ai/llm/prompts/landmark2.png",
    mime_type="image/png",
)
image_file3 = Part.from_uri(
    "gs://cloud-samples-data/vertex-ai/llm/prompts/landmark3.png",
    mime_type="image/png",
)

model = GenerativeModel("gemini-1.5-flash-002")
response = model.generate_content(
    [
        image_file1,
        "city: Rome, Landmark: the Colosseum",
        image_file2,
        "city: Beijing, Landmark: Forbidden City",
        image_file3,
    ]
)
print(response.text)
# Example response:
# city: Rio de Janeiro, Landmark: Christ the Redeemer

Java

Sebelum mencoba contoh ini, ikuti petunjuk penyiapan Java di panduan memulai Vertex AI. Untuk mengetahui informasi selengkapnya, lihat dokumentasi referensi Vertex AI Java SDK untuk Gemini.

Untuk melakukan autentikasi ke Vertex AI, siapkan Kredensial Default Aplikasi. Untuk informasi selengkapnya, lihat Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

Respons streaming dan non-streaming

Anda dapat memilih apakah model menghasilkan respons streaming atau respons non-streaming. Untuk respons streaming, Anda akan menerima setiap respons segera setelah token output-nya dibuat. Untuk respons non-streaming, Anda akan menerima semua respons setelah semua token output dibuat.

Untuk respons streaming, gunakan metode generateContentStream.

  public ResponseStream<GenerateContentResponse> generateContentStream(Content content)
  

Untuk respons non-streaming, gunakan metode generateContent.

  public GenerateContentResponse generateContent(Content content)
  

Kode contoh

import com.google.cloud.vertexai.VertexAI;
import com.google.cloud.vertexai.api.Content;
import com.google.cloud.vertexai.api.GenerateContentResponse;
import com.google.cloud.vertexai.generativeai.ContentMaker;
import com.google.cloud.vertexai.generativeai.GenerativeModel;
import com.google.cloud.vertexai.generativeai.PartMaker;
import com.google.cloud.vertexai.generativeai.ResponseHandler;
import java.io.ByteArrayOutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.net.HttpURLConnection;
import java.net.URL;

public class MultimodalMultiImage {

  public static void main(String[] args) throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "your-google-cloud-project-id";
    String location = "us-central1";
    String modelName = "gemini-1.5-flash-001";

    multimodalMultiImage(projectId, location, modelName);
  }

  // Generates content from multiple input images.
  public static void multimodalMultiImage(String projectId, String location, String modelName)
      throws IOException {
    // Initialize client that will be used to send requests. This client only needs
    // to be created once, and can be reused for multiple requests.
    try (VertexAI vertexAI = new VertexAI(projectId, location)) {
      GenerativeModel model = new GenerativeModel(modelName, vertexAI);

      Content content = ContentMaker.fromMultiModalData(
          PartMaker.fromMimeTypeAndData("image/png", readImageFile(
              "https://storage.googleapis.com/cloud-samples-data/vertex-ai/llm/prompts/landmark1.png")),
          "city: Rome, Landmark: the Colosseum",
          PartMaker.fromMimeTypeAndData("image/png", readImageFile(
              "https://storage.googleapis.com/cloud-samples-data/vertex-ai/llm/prompts/landmark2.png")),
          "city: Beijing, Landmark: Forbidden City",
          PartMaker.fromMimeTypeAndData("image/png", readImageFile(
              "https://storage.googleapis.com/cloud-samples-data/vertex-ai/llm/prompts/landmark3.png"))
      );

      GenerateContentResponse response = model.generateContent(content);

      String output = ResponseHandler.getText(response);
      System.out.println(output);
    }
  }

  // Reads the image data from the given URL.
  public static byte[] readImageFile(String url) throws IOException {
    URL urlObj = new URL(url);
    HttpURLConnection connection = (HttpURLConnection) urlObj.openConnection();
    connection.setRequestMethod("GET");

    int responseCode = connection.getResponseCode();

    if (responseCode == HttpURLConnection.HTTP_OK) {
      InputStream inputStream = connection.getInputStream();
      ByteArrayOutputStream outputStream = new ByteArrayOutputStream();

      byte[] buffer = new byte[1024];
      int bytesRead;
      while ((bytesRead = inputStream.read(buffer)) != -1) {
        outputStream.write(buffer, 0, bytesRead);
      }

      return outputStream.toByteArray();
    } else {
      throw new RuntimeException("Error fetching file: " + responseCode);
    }
  }
}

Node.js

Sebelum mencoba contoh ini, ikuti petunjuk penyiapan Node.js di Panduan memulai AI Generatif menggunakan Node.js SDK. Untuk mengetahui informasi selengkapnya, lihat dokumentasi referensi Node.js SDK untuk Gemini.

Untuk melakukan autentikasi ke Vertex AI, siapkan Kredensial Default Aplikasi. Untuk informasi selengkapnya, lihat Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

Respons streaming dan non-streaming

Anda dapat memilih apakah model menghasilkan respons streaming atau respons non-streaming. Untuk respons streaming, Anda akan menerima setiap respons segera setelah token output-nya dibuat. Untuk respons non-streaming, Anda akan menerima semua respons setelah semua token output dibuat.

Untuk respons streaming, gunakan metode generateContentStream.

  const streamingResp = await generativeModel.generateContentStream(request);
  

Untuk respons non-streaming, gunakan metode generateContent.

  const streamingResp = await generativeModel.generateContent(request);
  

Kode contoh

const {VertexAI} = require('@google-cloud/vertexai');
const axios = require('axios');

async function getBase64(url) {
  const image = await axios.get(url, {responseType: 'arraybuffer'});
  return Buffer.from(image.data).toString('base64');
}

/**
 * TODO(developer): Update these variables before running the sample.
 */
async function sendMultiModalPromptWithImage(
  projectId = 'PROJECT_ID',
  location = 'us-central1',
  model = 'gemini-1.5-flash-001'
) {
  // For images, the SDK supports base64 strings
  const landmarkImage1 = await getBase64(
    'https://storage.googleapis.com/cloud-samples-data/vertex-ai/llm/prompts/landmark1.png'
  );
  const landmarkImage2 = await getBase64(
    'https://storage.googleapis.com/cloud-samples-data/vertex-ai/llm/prompts/landmark2.png'
  );
  const landmarkImage3 = await getBase64(
    'https://storage.googleapis.com/cloud-samples-data/vertex-ai/llm/prompts/landmark3.png'
  );

  // Initialize Vertex with your Cloud project and location
  const vertexAI = new VertexAI({project: projectId, location: location});

  const generativeVisionModel = vertexAI.getGenerativeModel({
    model: model,
  });

  // Pass multimodal prompt
  const request = {
    contents: [
      {
        role: 'user',
        parts: [
          {
            inlineData: {
              data: landmarkImage1,
              mimeType: 'image/png',
            },
          },
          {
            text: 'city: Rome, Landmark: the Colosseum',
          },

          {
            inlineData: {
              data: landmarkImage2,
              mimeType: 'image/png',
            },
          },
          {
            text: 'city: Beijing, Landmark: Forbidden City',
          },
          {
            inlineData: {
              data: landmarkImage3,
              mimeType: 'image/png',
            },
          },
        ],
      },
    ],
  };

  // Create the response
  const response = await generativeVisionModel.generateContent(request);
  // Wait for the response to complete
  const aggregatedResponse = await response.response;
  // Select the text from the response
  const fullTextResponse =
    aggregatedResponse.candidates[0].content.parts[0].text;

  console.log(fullTextResponse);
}

Go

Sebelum mencoba contoh ini, ikuti petunjuk penyiapan Go di panduan memulai Vertex AI. Untuk mengetahui informasi selengkapnya, lihat dokumentasi referensi Vertex AI Go SDK untuk Gemini.

Untuk melakukan autentikasi ke Vertex AI, siapkan Kredensial Default Aplikasi. Untuk informasi selengkapnya, lihat Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

Respons streaming dan non-streaming

Anda dapat memilih apakah model menghasilkan respons streaming atau respons non-streaming. Untuk respons streaming, Anda akan menerima setiap respons segera setelah token output-nya dibuat. Untuk respons non-streaming, Anda akan menerima semua respons setelah semua token output dibuat.

Untuk respons streaming, gunakan metode GenerateContentStream.

  iter := model.GenerateContentStream(ctx, genai.Text("Tell me a story about a lumberjack and his giant ox. Keep it very short."))
  

Untuk respons non-streaming, gunakan metode GenerateContent.

  resp, err := model.GenerateContent(ctx, genai.Text("What is the average size of a swallow?"))
  

Kode contoh

import (
	"context"
	"fmt"
	"io"
	"mime"
	"path/filepath"

	"cloud.google.com/go/vertexai/genai"
)

// generateMultimodalContent shows how to generate a text from a multimodal prompt using the Gemini model,
// writing the response to the provided io.Writer.
func generateMultimodalContent(w io.Writer, projectID, location, modelName string) error {
	// location := "us-central1"
	// modelName := "gemini-1.5-flash-001"
	ctx := context.Background()

	// create prompt image parts
	colosseum := genai.FileData{
		MIMEType: mime.TypeByExtension(filepath.Ext("landmark1.png")),
		FileURI:  "gs://cloud-samples-data/vertex-ai/llm/prompts/landmark1.png",
	}
	forbiddenCity := genai.FileData{
		MIMEType: mime.TypeByExtension(filepath.Ext("landmark2.png")),
		FileURI:  "gs://cloud-samples-data/vertex-ai/llm/prompts/landmark2.png",
	}
	newImage := genai.FileData{
		MIMEType: mime.TypeByExtension(filepath.Ext("landmark3.png")),
		FileURI:  "gs://cloud-samples-data/vertex-ai/llm/prompts/landmark3.png",
	}
	// create a multimodal (multipart) prompt
	prompt := []genai.Part{
		colosseum,
		genai.Text("city: Rome, Landmark: the Colosseum "),
		forbiddenCity,
		genai.Text("city: Beijing, Landmark: the Forbidden City "),
		newImage,
	}

	// generate the response
	client, err := genai.NewClient(ctx, projectID, location)
	if err != nil {
		return fmt.Errorf("unable to create client: %w", err)
	}
	defer client.Close()

	model := client.GenerativeModel(modelName)

	res, err := model.GenerateContent(ctx, prompt...)
	if err != nil {
		return fmt.Errorf("unable to generate contents: %w", err)
	}

	fmt.Fprintf(w, "generated response: %s\n", res.Candidates[0].Content.Parts[0])
	return nil
}

C#

Sebelum mencoba contoh ini, ikuti petunjuk penyiapan C# di panduan memulai Vertex AI. Untuk mengetahui informasi selengkapnya, lihat Dokumentasi referensi C# Vertex AI.

Untuk melakukan autentikasi ke Vertex AI, siapkan Kredensial Default Aplikasi. Untuk informasi selengkapnya, lihat Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

Respons streaming dan non-streaming

Anda dapat memilih apakah model menghasilkan respons streaming atau respons non-streaming. Untuk respons streaming, Anda akan menerima setiap respons segera setelah token output-nya dibuat. Untuk respons non-streaming, Anda akan menerima semua respons setelah semua token output dibuat.

Untuk respons streaming, gunakan metode StreamGenerateContent.

  public virtual PredictionServiceClient.StreamGenerateContentStream StreamGenerateContent(GenerateContentRequest request)
  

Untuk respons non-streaming, gunakan metode GenerateContentAsync.

  public virtual Task<GenerateContentResponse> GenerateContentAsync(GenerateContentRequest request)
  

Untuk mengetahui informasi selengkapnya tentang cara server melakukan streaming respons, lihat Streaming RPC.

Kode contoh


using Google.Api.Gax.Grpc;
using Google.Cloud.AIPlatform.V1;
using Google.Protobuf;
using System.Net.Http;
using System.Text;
using System.Threading.Tasks;

public class MultimodalMultiImage
{
    public async Task<string> GenerateContent(
        string projectId = "your-project-id",
        string location = "us-central1",
        string publisher = "google",
        string model = "gemini-1.5-flash-001"
    )
    {
        var predictionServiceClient = new PredictionServiceClientBuilder
        {
            Endpoint = $"{location}-aiplatform.googleapis.com"
        }.Build();

        ByteString colosseum = await ReadImageFileAsync(
            "https://storage.googleapis.com/cloud-samples-data/vertex-ai/llm/prompts/landmark1.png");

        ByteString forbiddenCity = await ReadImageFileAsync(
            "https://storage.googleapis.com/cloud-samples-data/vertex-ai/llm/prompts/landmark2.png");

        ByteString christRedeemer = await ReadImageFileAsync(
            "https://storage.googleapis.com/cloud-samples-data/vertex-ai/llm/prompts/landmark3.png");

        var generateContentRequest = new GenerateContentRequest
        {
            Model = $"projects/{projectId}/locations/{location}/publishers/{publisher}/models/{model}",
            Contents =
            {
                new Content
                {
                    Role = "USER",
                    Parts =
                    {
                        new Part { InlineData = new() { MimeType = "image/png", Data = colosseum }},
                        new Part { Text = "city: Rome, Landmark: the Colosseum" },
                        new Part { InlineData = new() { MimeType = "image/png", Data = forbiddenCity }},
                        new Part { Text = "city: Beijing, Landmark: Forbidden City"},
                        new Part { InlineData = new() { MimeType = "image/png", Data = christRedeemer }}
                    }
                }
            }
        };

        using PredictionServiceClient.StreamGenerateContentStream response = predictionServiceClient.StreamGenerateContent(generateContentRequest);

        StringBuilder fullText = new();

        AsyncResponseStream<GenerateContentResponse> responseStream = response.GetResponseStream();
        await foreach (GenerateContentResponse responseItem in responseStream)
        {
            fullText.Append(responseItem.Candidates[0].Content.Parts[0].Text);
        }
        return fullText.ToString();
    }

    private static async Task<ByteString> ReadImageFileAsync(string url)
    {
        using HttpClient client = new();
        using var response = await client.GetAsync(url);
        byte[] imageBytes = await response.Content.ReadAsByteArrayAsync();
        return ByteString.CopyFrom(imageBytes);
    }
}

REST

Setelah menyiapkan lingkungan, Anda dapat menggunakan REST untuk menguji perintah teks. Contoh berikut mengirimkan permintaan ke endpoint model penayang.

Sebelum menggunakan salah satu data permintaan, lakukan penggantian berikut:

  • LOCATION: Region untuk memproses permintaan. Masukkan wilayah yang didukung. Untuk mengetahui daftar lengkap region yang didukung, lihat Lokasi yang tersedia.

    Klik untuk meluaskan sebagian daftar region yang tersedia

    • us-central1
    • us-west4
    • northamerica-northeast1
    • us-east4
    • us-west1
    • asia-northeast3
    • asia-southeast1
    • asia-northeast1
  • PROJECT_ID: Project ID Anda.
  • FILE_URI1: URI atau URL file yang akan disertakan dalam perintah. Nilai yang dapat diterima mencakup hal berikut:
    • URI bucket Cloud Storage: Objek harus dapat dibaca secara publik atau berada di project Google Cloud yang sama dengan yang mengirim permintaan. Untuk gemini-1.5-pro dan gemini-1.5-flash, batas ukurannya adalah 2 GB. Untuk gemini-1.0-pro-vision, batas ukurannya adalah 20 MB.
    • URL HTTP: URL file harus dapat dibaca secara publik. Anda dapat menentukan satu file video, satu file audio, dan maksimal 10 file gambar per permintaan. File audio, file video, dan dokumen tidak boleh melebihi 15 MB.
    • URL video YouTube: Video YouTube harus dimiliki oleh akun yang Anda gunakan untuk login ke konsol Google Cloud atau bersifat publik. Hanya satu URL video YouTube yang didukung per permintaan.

    Saat menentukan fileURI, Anda juga harus menentukan jenis media (mimeType) file.

    Jika tidak memiliki file gambar di Cloud Storage, Anda dapat menggunakan file berikut yang tersedia secara publik: gs://cloud-samples-data/vertex-ai/llm/prompts/landmark1.png dengan jenis mime image/png. Untuk melihat gambar ini, buka file gambar contoh.

  • MIME_TYPE: Jenis media file yang ditentukan dalam kolom data atau fileUri. Nilai yang dapat diterima mencakup hal berikut:

    Klik untuk meluaskan jenis MIME

    • application/pdf
    • audio/mpeg
    • audio/mp3
    • audio/wav
    • image/png
    • image/jpeg
    • image/webp
    • text/plain
    • video/mov
    • video/mpeg
    • video/mp4
    • video/mpg
    • video/avi
    • video/wmv
    • video/mpegps
    • video/flv
    Untuk mempermudah, sampel ini menggunakan jenis media yang sama untuk ketiga gambar input.
  • TEXT1: Petunjuk teks yang akan disertakan dalam perintah. Misalnya, city: Rome, Landmark: the Colosseum
  • FILE_URI2: URI atau URL file yang akan disertakan dalam perintah. Nilai yang dapat diterima mencakup hal berikut:
    • URI bucket Cloud Storage: Objek harus dapat dibaca secara publik atau berada di project Google Cloud yang sama dengan yang mengirim permintaan. Untuk gemini-1.5-pro dan gemini-1.5-flash, batas ukurannya adalah 2 GB. Untuk gemini-1.0-pro-vision, batas ukurannya adalah 20 MB.
    • URL HTTP: URL file harus dapat dibaca secara publik. Anda dapat menentukan satu file video, satu file audio, dan maksimal 10 file gambar per permintaan. File audio, file video, dan dokumen tidak boleh melebihi 15 MB.
    • URL video YouTube: Video YouTube harus dimiliki oleh akun yang Anda gunakan untuk login ke konsol Google Cloud atau bersifat publik. Hanya satu URL video YouTube yang didukung per permintaan.

    Saat menentukan fileURI, Anda juga harus menentukan jenis media (mimeType) file.

    Jika tidak memiliki file gambar di Cloud Storage, Anda dapat menggunakan file berikut yang tersedia secara publik: gs://cloud-samples-data/vertex-ai/llm/prompts/landmark2.png dengan jenis mime image/png. Untuk melihat gambar ini, buka file gambar contoh.

  • TEXT2: Petunjuk teks yang akan disertakan dalam perintah. Misalnya, city: Beijing, Landmark: Forbidden City
  • FILE_URI3: URI atau URL file yang akan disertakan dalam perintah. Nilai yang dapat diterima mencakup hal berikut:
    • URI bucket Cloud Storage: Objek harus dapat dibaca secara publik atau berada di project Google Cloud yang sama dengan yang mengirim permintaan. Untuk gemini-1.5-pro dan gemini-1.5-flash, batas ukurannya adalah 2 GB. Untuk gemini-1.0-pro-vision, batas ukurannya adalah 20 MB.
    • URL HTTP: URL file harus dapat dibaca secara publik. Anda dapat menentukan satu file video, satu file audio, dan maksimal 10 file gambar per permintaan. File audio, file video, dan dokumen tidak boleh melebihi 15 MB.
    • URL video YouTube: Video YouTube harus dimiliki oleh akun yang Anda gunakan untuk login ke konsol Google Cloud atau bersifat publik. Hanya satu URL video YouTube yang didukung per permintaan.

    Saat menentukan fileURI, Anda juga harus menentukan jenis media (mimeType) file.

    Jika tidak memiliki file gambar di Cloud Storage, Anda dapat menggunakan file berikut yang tersedia secara publik: gs://cloud-samples-data/vertex-ai/llm/prompts/landmark3.png dengan jenis mime image/png. Untuk melihat gambar ini, buka file gambar contoh.

Untuk mengirim permintaan Anda, pilih salah satu opsi berikut:

curl

Simpan isi permintaan dalam file bernama request.json. Jalankan perintah berikut di terminal untuk membuat atau menimpa file ini di direktori saat ini:

cat > request.json << 'EOF'
{
  "contents": {
    "role": "USER",
    "parts": [
      {
        "fileData": {
          "fileUri": "FILE_URI1",
          "mimeType": "MIME_TYPE"
        }
      },
      {
        "text": "TEXT1"
      },
      {
        "fileData": {
          "fileUri": "FILE_URI2",
          "mimeType": "MIME_TYPE"
        }
      },
      {
        "text": "TEXT2"
      },
      {
        "fileData": {
          "fileUri": "FILE_URI3",
          "mimeType": "MIME_TYPE"
        }
      }
    ]
  }
}
EOF

Kemudian, jalankan perintah berikut untuk mengirim permintaan REST Anda:

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/publishers/google/models/gemini-1.5-flash:generateContent"

PowerShell

Simpan isi permintaan dalam file bernama request.json. Jalankan perintah berikut di terminal untuk membuat atau menimpa file ini di direktori saat ini:

@'
{
  "contents": {
    "role": "USER",
    "parts": [
      {
        "fileData": {
          "fileUri": "FILE_URI1",
          "mimeType": "MIME_TYPE"
        }
      },
      {
        "text": "TEXT1"
      },
      {
        "fileData": {
          "fileUri": "FILE_URI2",
          "mimeType": "MIME_TYPE"
        }
      },
      {
        "text": "TEXT2"
      },
      {
        "fileData": {
          "fileUri": "FILE_URI3",
          "mimeType": "MIME_TYPE"
        }
      }
    ]
  }
}
'@  | Out-File -FilePath request.json -Encoding utf8

Kemudian, jalankan perintah berikut untuk mengirim permintaan REST Anda:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/publishers/google/models/gemini-1.5-flash:generateContent" | Select-Object -Expand Content

Anda akan menerima respons JSON yang mirip dengan berikut ini.

Perhatikan hal berikut di URL untuk contoh ini:
  • Gunakan metode generateContent untuk meminta respons ditampilkan setelah sepenuhnya dibuat. Untuk mengurangi persepsi latensi kepada audiens manusia, streaming respons saat dihasilkan menggunakan metode streamGenerateContent.
  • ID model multimodal terletak di akhir URL sebelum metode (misalnya, gemini-1.5-flash atau gemini-1.0-pro-vision). Contoh ini juga dapat mendukung model lainnya.

Konsol

Untuk mengirim perintah multimodal menggunakan konsol Google Cloud, lakukan hal berikut:

  1. Di bagian Vertex AI pada konsol Google Cloud, buka halaman Vertex AI Studio.

    Buka Vertex AI Studio

  2. Klik Open freeform.

  3. Opsional: Konfigurasi model dan parameter:

    • Model: Pilih model.
    • Region: Pilih region yang ingin Anda gunakan.
    • Suhu: Gunakan penggeser atau kotak teks untuk memasukkan nilai suhu.

      Suhu digunakan untuk pengambilan sampel selama pembuatan respons, yang terjadi saat topP dan topK diterapkan. Suhu mengontrol tingkat keacakan dalam pemilihan token. Suhu yang lebih rendah cocok untuk perintah yang memerlukan respons yang kurang terbuka atau kreatif, sedangkan suhu yang lebih tinggi dapat memberikan hasil yang lebih beragam atau kreatif. Suhu 0 berarti token probabilitas tertinggi selalu dipilih. Dalam hal ini, respons untuk permintaan tertentu sebagian besar deterministik, tetapi sedikit variasi masih dapat dilakukan.

      Jika model menampilkan respons yang terlalu umum, terlalu pendek, atau model memberikan respons pengganti, coba tingkatkan suhunya.

    • Batas token output: Gunakan penggeser atau kotak teks untuk memasukkan nilai untuk batas output maksimum.

      Jumlah maksimum token yang dapat dibuat dalam respons. Token terdiri dari sekitar empat karakter. 100 token setara dengan sekitar 60-80 kata.

      Tentukan nilai yang lebih rendah untuk respons yang lebih singkat dan nilai yang lebih tinggi untuk respons yang berpotensi lebih panjang.

    • Tambahkan urutan perhentian: Opsional. Masukkan urutan perhentian, yang merupakan rangkaian karakter yang menyertakan spasi. Jika model menemukan urutan berhenti, pembuatan respons akan berhenti. Urutan perhentian tidak disertakan dalam respons, dan Anda dapat menambahkan hingga lima urutan perhentian.

  4. Opsional: Untuk mengonfigurasi parameter lanjutan, klik Advanced dan konfigurasikan sebagai berikut:

    Klik untuk meluaskan konfigurasi lanjutan

    • Top-K: Gunakan penggeser atau kotak teks untuk memasukkan nilai untuk top-K. (tidak didukung untuk Gemini 1.5).

      Top-K mengubah cara model memilih token untuk output. Top-K 1 berarti token yang dipilih berikutnya adalah yang paling mungkin di antara semua token dalam kosakata model (juga disebut decoding greedy), sedangkan top-K 3 berarti token berikutnya dipilih di antara tiga token yang paling mungkin dengan menggunakan suhu.

      Untuk setiap langkah pemilihan token, token top-K dengan probabilitas tertinggi akan diambil sampelnya. Kemudian token akan difilter lebih lanjut berdasarkan top-P dengan token akhir yang dipilih menggunakan pengambilan sampel suhu.

      Tentukan nilai yang lebih rendah untuk respons acak yang lebih sedikit dan nilai yang lebih tinggi untuk respons acak yang lebih banyak.

    • Top-P: Gunakan penggeser atau kotak teks untuk memasukkan nilai untuk top-P. Token dipilih dari yang paling mungkin hingga yang paling tidak mungkin sampai jumlah probabilitasnya sama dengan nilai top-P. Untuk hasil yang paling sedikit variabelnya, tetapkan top-P ke 0.
    • Respons maksimum: Gunakan penggeser atau kotak teks untuk memasukkan nilai jumlah respons yang akan dihasilkan.
    • Streaming respons: Aktifkan untuk mencetak respons saat dihasilkan.
    • Nilai minimum filter keamanan: Pilih nilai minimum kemungkinan Anda melihat respons yang dapat berbahaya.
    • Aktifkan Grounding: Grounding tidak didukung untuk perintah multimodal.

  5. Klik Sisipkan Media, lalu pilih sumber untuk file Anda.

    Upload

    Pilih file yang ingin Anda upload, lalu klik Buka.

    Melalui URL

    Masukkan URL file yang ingin Anda gunakan, lalu klik Sisipkan.

    Cloud Storage

    Pilih bucket, lalu file dari bucket yang ingin Anda impor, lalu klik Select.

    Google Drive

    1. Pilih akun dan beri izin kepada Vertex AI Studio untuk mengakses akun Anda saat pertama kali Anda memilih opsi ini. Anda dapat mengupload beberapa file yang memiliki total ukuran hingga 10 MB. Satu file tidak boleh melebihi 7 MB.
    2. Klik file yang ingin Anda tambahkan.
    3. Klik Pilih.

      Thumbnail file akan ditampilkan di panel Prompt. Jumlah total token juga ditampilkan. Jika data perintah Anda melebihi batas token, token akan terpotong dan tidak disertakan dalam pemrosesan data Anda.

  6. Masukkan perintah teks Anda di panel Prompt.

  7. Opsional: Untuk melihat Token ID to text dan Token IDs, klik tokens count di panel Prompt.

  8. Klik Kirim.

  9. Opsional: Untuk menyimpan perintah Anda ke My prompts, klik Save.

  10. Opsional: Untuk mendapatkan kode Python atau perintah curl untuk perintah Anda, klik Get code.

Menetapkan parameter model opsional

Setiap model memiliki kumpulan parameter opsional yang dapat Anda tetapkan. Untuk mengetahui informasi selengkapnya, lihat Parameter pembuatan konten.

Persyaratan gambar

Model multimodal Gemini mendukung jenis MIME gambar berikut:

Jenis MIME gambar Gemini 1.5 Flash Gemini 1.5 Pro Gemini 1.0 Pro Vision
PNG - image/png
JPEG - image/jpeg
WebP - image/webp

Tidak ada batasan spesifik untuk jumlah piksel dalam gambar. Namun, gambar yang lebih besar akan diskalakan ke bawah dan ditambahkan padding agar sesuai dengan resolusi maksimum 3072 x 3072 sekaligus mempertahankan rasio aspek aslinya.

Berikut adalah jumlah maksimum file gambar yang diizinkan dalam permintaan perintah:

  • Gemini 1.0 Pro Vision: 16 gambar
  • Gemini 1.5 Flash dan Gemini 1.5 Pro: 3.000 gambar

Berikut cara token dihitung untuk gambar:

  • Gemini 1.0 Pro Vision: Setiap gambar mewakili 258 token.
  • Gemini 1.5 Flash dan Gemini 1.5 Pro:
    • Jika kedua dimensi gambar kurang dari atau sama dengan 384 piksel, 258 token akan digunakan.
    • Jika satu dimensi gambar lebih besar dari 384 piksel, gambar akan dipangkas menjadi ubin. Setiap ukuran kartu ditetapkan secara default ke dimensi terkecil (lebar atau tinggi) dibagi 1,5. Jika perlu, setiap ubin akan disesuaikan agar tidak lebih kecil dari 256 piksel dan tidak lebih besar dari 768 piksel. Setiap kartu kemudian diubah ukurannya menjadi 768x768 dan menggunakan 258 token.

Praktik terbaik

Saat menggunakan gambar, gunakan praktik terbaik dan informasi berikut untuk mendapatkan hasil terbaik:

  • Jika Anda ingin mendeteksi teks dalam gambar, gunakan perintah dengan satu gambar untuk menghasilkan hasil yang lebih baik daripada perintah dengan beberapa gambar.
  • Jika perintah Anda berisi satu gambar, tempatkan gambar sebelum perintah teks dalam permintaan Anda.
  • Jika perintah Anda berisi beberapa gambar, dan Anda ingin merujuknya nanti dalam perintah atau meminta model untuk merujuknya dalam respons model, sebaiknya beri setiap gambar indeks sebelum gambar. Gunakan a b c atau image 1 image 2 image 3 untuk indeks Anda. Berikut adalah contoh penggunaan gambar yang diindeks dalam perintah:
    image 1 
    image 2 
    image 3 
    
    Write a blogpost about my day using image 1 and image 2. Then, give me ideas
    for tomorrow based on image 3.
  • Gunakan gambar dengan resolusi lebih tinggi karena akan menghasilkan hasil yang lebih baik.
  • Sertakan beberapa contoh dalam perintah.
  • Putar gambar ke orientasi yang tepat sebelum menambahkannya ke perintah.
  • Hindari gambar yang buram.

Batasan

Meskipun model multimodal Gemini sangat canggih dalam banyak kasus penggunaan multimodal, penting untuk memahami keterbatasan model:

  • Moderasi konten: Model menolak memberikan jawaban tentang gambar yang melanggar kebijakan keamanan kami.
  • Pemikiran spasial: Model tidak akurat dalam menemukan teks atau objek dalam gambar. Metode ini mungkin hanya menampilkan perkiraan jumlah objek.
  • Penggunaan medis: Model ini tidak sesuai untuk menafsirkan gambar medis (misalnya, sinar-X dan CT scan) atau memberikan saran medis.
  • Pengenalan orang: Model ini tidak dimaksudkan untuk digunakan untuk mengidentifikasi orang yang bukan selebritas dalam gambar.
  • Akurasi: Model mungkin mengalami halusinasi atau melakukan kesalahan saat menafsirkan gambar berkualitas rendah, diputar, atau beresolusi sangat rendah. Model juga mungkin mengalami halusinasi saat menafsirkan teks tulisan tangan dalam dokumen gambar.

Langkah selanjutnya