Menggunakan countTokens API

Halaman ini menunjukkan cara mendapatkan jumlah token dan jumlah karakter yang dapat ditagih untuk sebuah perintah menggunakan countTokens API.

Model yang didukung

Model multimodal berikut mendukung perolehan estimasi jumlah token prompt:

  • gemini-1.5-flash-002
  • gemini-1.5-pro-002
  • gemini-1.0-pro-002
  • gemini-1.0-pro-vision-001

Untuk mempelajari versi model lebih lanjut, lihat Versi dan siklus proses model Gemini.

Mendapatkan jumlah token untuk prompt

Anda bisa mendapatkan estimasi jumlah token dan jumlah karakter yang dapat ditagih untuk permintaan menggunakan Vertex AI API.

Python

Untuk mempelajari cara menginstal atau mengupdate Vertex AI SDK untuk Python, lihat Menginstal Vertex AI SDK untuk Python. Untuk mengetahui informasi selengkapnya, lihat Dokumentasi referensi Python API.

import vertexai
from vertexai.generative_models import GenerativeModel

# TODO(developer): Update and un-comment below line
# PROJECT_ID = "your-project-id"
vertexai.init(project=PROJECT_ID, location="us-central1")

model = GenerativeModel("gemini-1.5-flash-002")

prompt = "Why is the sky blue?"
# Prompt tokens count
response = model.count_tokens(prompt)
print(f"Prompt Token Count: {response.total_tokens}")
print(f"Prompt Character Count: {response.total_billable_characters}")

# Send text to Gemini
response = model.generate_content(prompt)

# Response tokens count
usage_metadata = response.usage_metadata
print(f"Prompt Token Count: {usage_metadata.prompt_token_count}")
print(f"Candidates Token Count: {usage_metadata.candidates_token_count}")
print(f"Total Token Count: {usage_metadata.total_token_count}")
# Example response:
# Prompt Token Count: 6
# Prompt Character Count: 16
# Prompt Token Count: 6
# Candidates Token Count: 315
# Total Token Count: 321

Java

Sebelum mencoba contoh ini, ikuti petunjuk penyiapan Java di Panduan memulai Vertex AI menggunakan library klien. Untuk mengetahui informasi selengkapnya, lihat Dokumentasi referensi API Java Vertex AI.

Untuk melakukan autentikasi ke Vertex AI, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, baca Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

import com.google.cloud.vertexai.VertexAI;
import com.google.cloud.vertexai.api.CountTokensResponse;
import com.google.cloud.vertexai.api.GenerateContentResponse;
import com.google.cloud.vertexai.generativeai.GenerativeModel;
import java.io.IOException;

public class GetTokenCount {
  public static void main(String[] args) throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "your-google-cloud-project-id";
    String location = "us-central1";
    String modelName = "gemini-1.5-flash-001";

    getTokenCount(projectId, location, modelName);
  }

  // Gets the number of tokens for the prompt and the model's response.
  public static int getTokenCount(String projectId, String location, String modelName)
      throws IOException {
    // Initialize client that will be used to send requests.
    // This client only needs to be created once, and can be reused for multiple requests.
    try (VertexAI vertexAI = new VertexAI(projectId, location)) {
      GenerativeModel model = new GenerativeModel(modelName, vertexAI);

      String textPrompt = "Why is the sky blue?";
      CountTokensResponse response = model.countTokens(textPrompt);

      int promptTokenCount = response.getTotalTokens();
      int promptCharCount = response.getTotalBillableCharacters();

      System.out.println("Prompt token Count: " + promptTokenCount);
      System.out.println("Prompt billable character count: " + promptCharCount);

      GenerateContentResponse contentResponse = model.generateContent(textPrompt);

      int tokenCount = contentResponse.getUsageMetadata().getPromptTokenCount();
      int candidateTokenCount = contentResponse.getUsageMetadata().getCandidatesTokenCount();
      int totalTokenCount = contentResponse.getUsageMetadata().getTotalTokenCount();

      System.out.println("Prompt token Count: " + tokenCount);
      System.out.println("Candidate Token Count: " + candidateTokenCount);
      System.out.println("Total token Count: " + totalTokenCount);

      return promptTokenCount;
    }
  }
}

C#

Sebelum mencoba contoh ini, ikuti petunjuk penyiapan C# di Panduan memulai Vertex AI menggunakan library klien. Untuk mengetahui informasi selengkapnya, lihat Dokumentasi referensi API C# Vertex AI.

Untuk melakukan autentikasi ke Vertex AI, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, baca Menyiapkan autentikasi untuk lingkungan pengembangan lokal.


using Google.Cloud.AIPlatform.V1;
using System;
using System.Threading.Tasks;

public class GetTokenCount
{
    public async Task<int> CountTokens(
        string projectId = "your-project-id",
        string location = "us-central1",
        string publisher = "google",
        string model = "gemini-1.5-flash-001"
    )
    {
        var client = new LlmUtilityServiceClientBuilder
        {
            Endpoint = $"{location}-aiplatform.googleapis.com"
        }.Build();

        var request = new CountTokensRequest
        {
            Endpoint = $"projects/{projectId}/locations/{location}/publishers/{publisher}/models/{model}",
            Model = $"projects/{projectId}/locations/{location}/publishers/{publisher}/models/{model}",
            Contents =
            {
                new Content
                {
                    Role = "USER",
                    Parts = { new Part { Text = "Why is the sky blue?" } }
                }
            }
        };

        var response = await client.CountTokensAsync(request);
        int tokenCount = response.TotalTokens;
        Console.WriteLine($"There are {tokenCount} tokens in the prompt.");
        return tokenCount;
    }
}

Node.js

Sebelum mencoba contoh ini, ikuti petunjuk penyiapan Node.js di Panduan memulai Vertex AI menggunakan library klien. Untuk mengetahui informasi selengkapnya, lihat Dokumentasi referensi API Node.js Vertex AI.

Untuk melakukan autentikasi ke Vertex AI, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, baca Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

const {VertexAI} = require('@google-cloud/vertexai');

/**
 * TODO(developer): Update these variables before running the sample.
 */
async function countTokens(
  projectId = 'PROJECT_ID',
  location = 'us-central1',
  model = 'gemini-1.5-flash-001'
) {
  // Initialize Vertex with your Cloud project and location
  const vertexAI = new VertexAI({project: projectId, location: location});

  // Instantiate the model
  const generativeModel = vertexAI.getGenerativeModel({
    model: model,
  });

  const req = {
    contents: [{role: 'user', parts: [{text: 'How are you doing today?'}]}],
  };

  // Prompt tokens count
  const countTokensResp = await generativeModel.countTokens(req);
  console.log('Prompt tokens count: ', countTokensResp);

  // Send text to gemini
  const result = await generativeModel.generateContent(req);

  // Response tokens count
  const usageMetadata = result.response.usageMetadata;
  console.log('Response tokens count: ', usageMetadata);
}

Go

Sebelum mencoba contoh ini, ikuti petunjuk penyiapan Go di Panduan memulai Vertex AI menggunakan library klien. Untuk mengetahui informasi selengkapnya, lihat Dokumentasi referensi API Go Vertex AI.

Untuk melakukan autentikasi ke Vertex AI, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, baca Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

import (
	"context"
	"fmt"
	"io"

	"cloud.google.com/go/vertexai/genai"
)

// countTokens returns the number of tokens for this prompt.
func countTokens(w io.Writer, projectID, location, modelName string) error {
	// location := "us-central1"
	// modelName := "gemini-1.5-flash-001"

	ctx := context.Background()
	prompt := genai.Text("Why is the sky blue?")

	client, err := genai.NewClient(ctx, projectID, location)
	if err != nil {
		return fmt.Errorf("unable to create client: %w", err)
	}
	defer client.Close()

	model := client.GenerativeModel(modelName)

	resp, err := model.CountTokens(ctx, prompt)
	if err != nil {
		return err
	}

	fmt.Fprintf(w, "Number of tokens for the prompt: %d\n", resp.TotalTokens)

	resp2, err := model.GenerateContent(ctx, prompt)
	if err != nil {
		return err
	}
	fmt.Fprintf(w, "Number of tokens for the prompt: %d\n", resp2.UsageMetadata.PromptTokenCount)
	fmt.Fprintf(w, "Number of tokens for the candidates: %d\n", resp2.UsageMetadata.CandidatesTokenCount)
	fmt.Fprintf(w, "Total number of tokens: %d\n", resp2.UsageMetadata.TotalTokenCount)

	return nil
}

REST

Guna mendapatkan jumlah token dan jumlah karakter yang dapat ditagih untuk permintaan dengan menggunakan Vertex AI API, kirim permintaan POST ke endpoint model penayang.

Sebelum menggunakan salah satu data permintaan, lakukan penggantian berikut:

  • LOCATION: Region untuk memproses permintaan. Opsi yang tersedia mencakup hal berikut:

    Klik untuk meluaskan sebagian daftar region yang tersedia

    • us-central1
    • us-west4
    • northamerica-northeast1
    • us-east4
    • us-west1
    • asia-northeast3
    • asia-southeast1
    • asia-northeast1
  • PROJECT_ID: Project ID Anda.
  • MODEL_ID: ID model model multimodal yang ingin Anda gunakan.
  • ROLE: Peran dalam percakapan yang terkait dengan konten. Menentukan peran diperlukan bahkan dalam kasus penggunaan satu giliran. Nilai yang dapat diterima mencakup hal berikut:
    • USER: Menentukan konten yang dikirim oleh Anda.
  • TEXT: Petunjuk teks yang akan disertakan dalam perintah.
  • NAME: Nama fungsi yang akan dipanggil.
  • DESCRIPTION: Deskripsi dan tujuan fungsi.

Metode HTTP dan URL:

POST https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/publishers/google/models/MODEL_ID:countTokens

Isi JSON permintaan:

{
  "contents": [{
    "role": "ROLE",
    "parts": [{
      "text": "TEXT"
    }]
  }],
  "system_instruction": {
    "role": "ROLE",
    "parts": [{
      "text": "TEXT"
    }]
  },
  "tools": [{
    "function_declarations": [
      {
        "name": "NAME",
        "description": "DESCRIPTION",
        "parameters": {
          "type": "OBJECT",
          "properties": {
            "location": {
              "type": "TYPE",
              "description": "DESCRIPTION"
            }
          },
          "required": [
            "location"
          ]
        }
      }
    ]
  }]
}

Untuk mengirim permintaan Anda, pilih salah satu opsi berikut:

curl

Simpan isi permintaan dalam file bernama request.json, dan jalankan perintah berikut:

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/publishers/google/models/MODEL_ID:countTokens"

PowerShell

Simpan isi permintaan dalam file bernama request.json, dan jalankan perintah berikut:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/publishers/google/models/MODEL_ID:countTokens" | Select-Object -Expand Content

Anda akan melihat respons JSON yang mirip seperti berikut:

Konsol

Untuk mendapatkan jumlah token untuk perintah menggunakan Vertex AI Studio di Konsol Google Cloud, lakukan langkah-langkah berikut:

  1. Di bagian Vertex AI pada Konsol Google Cloud, buka halaman Vertex AI Studio.

    Buka Vertex AI Studio

  2. Klik Buka Bentuk Bebas atau Buka Chat.
  3. Jumlah token dihitung dan ditampilkan saat Anda mengetik di panel Prompt. Ini mencakup jumlah token dalam file input apa pun.
  4. Untuk melihat detail selengkapnya, klik <count> token untuk membuka Pemisah token perintah.
    • Untuk melihat token dalam perintah teks yang ditandai dengan warna berbeda yang menandai batas setiap ID token, klik Token ID to text. Token media tidak didukung.
    • Untuk melihat ID token, klik ID Token.

      Untuk menutup panel alat pemisah kata, klik X, atau klik di luar panel.

Contoh perintah curl untuk teks dengan gambar atau video:

MODEL_ID="gemini-1.0-pro-vision"
PROJECT_ID="my-project"
TEXT="Provide a summary with about two sentences for the following article."
REGION="us-central1"

curl \
-X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json" \
https://${REGION}-aiplatform.googleapis.com/v1/projects/${PROJECT_ID}/locations/${REGION}/publishers/google/models/${MODEL_ID}:countTokens -d \
$'{
    "contents": [{
      "role": "user",
      "parts": [
        {
          "file_data": {
            "file_uri": "gs://cloud-samples-data/generative-ai/video/pixel8.mp4",
            "mime_type": "video/mp4"
          }
        },
        {
          "text": "'"$TEXT"'"
        }]
    }]
 }'

Contoh perintah curl untuk teks saja:

MODEL_ID="gemini-1.0-pro-vision"
PROJECT_ID="my-project"
TEXT="Provide a summary with about two sentences for the following article."
REGION="us-central1"

curl \
-X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json" \
https://${REGION}-aiplatform.googleapis.com/v1/projects/${PROJECT_ID}/locations/${REGION}/publishers/google/models/${MODEL_ID}:countTokens -d \
$'{
  "contents": [{
      "role": "user",
      "parts": [{
        "text": "'"$TEXT"'"
      }]
    }]
 }'

Harga dan kuota

Penggunaan CountTokens API tidak dikenai biaya atau pembatasan kuota. Kuota maksimum untuk CountTokens API adalah 3.000 permintaan per menit.

Langkah selanjutnya