Geração controlada

É possível garantir que a saída gerada de um modelo sempre siga um esquema específico para receber respostas com formatação consistente. Por exemplo, você pode ter um esquema de dados estabelecido que é usado para outras tarefas. Se você seguir o mesmo esquema, é possível extrair dados diretamente da saída do modelo sem nenhum pós-processamento.

Para especificar a estrutura da saída de um modelo, defina um esquema de resposta, que funciona como modelo de respostas. Quando você envia um comando e inclui um esquema de resposta, a resposta do modelo sempre seguirá seu esquema.

É possível controlar a saída gerada ao usar os seguintes modelos:

  • Gemini 1.5 Pro
  • Gemini 1.5 Flash

Para chamadas de função com geração controlada (também conhecidas como chamadas de função forçada), consulte Introdução às chamadas de função.

Exemplos de casos de uso

Um caso de uso para aplicar um esquema de resposta é garantir a resposta de um modelo que gera um JSON válido e está em conformidade com o esquema. As saídas do modelo generativas podem ter certo grau de variabilidade, portanto, incluir um esquema de resposta garante que você sempre recebem um JSON válido. Consequentemente, as tarefas downstream podem gerar uma entrada JSON válida das respostas geradas.

Outro exemplo é restringir a forma como um modelo pode responder. Por exemplo, é possível fazer com que um modelo anote texto com rótulos definidos pelo usuário, não com rótulos que o modelo produz. Essa restrição é útil quando você espera um conjunto específico de rótulos como positive ou negative e não quer receber uma mistura de outros rótulos que o modelo possa gerar, como good, positive, negative ou bad.

Considerações

As considerações a seguir trazem possíveis limitações se você planeja usar um esquema de resposta:

  • É necessário usar a API para definir e utilizar um esquema de resposta. Não há console compatível.
  • O tamanho do esquema de resposta é contabilizado no limite de tokens de entrada.
  • Somente alguns formatos de saída são compatíveis, como application/json ou text/x.enum. Para mais informações, consulte o parâmetro responseMimeType na referência da API Gemini.
  • A geração controlada oferece suporte aos seguintes campos do esquema, que são um subconjunto de campos compatíveis com a Vertex AI:

    • enum
    • items
    • maxItems
    • nullable
    • properties
    • required

    Se você usa um campo sem suporte, a Vertex AI ainda pode lidar com sua solicitação, mas ignora o campo. Para conferir os detalhes de cada campo, consulte a Referência de esquema da Vertex AI.

Antes de começar

Defina um esquema de resposta para especificar a estrutura da saída de um modelo, os nomes dos campos e o tipo de dados esperado para cada campo. Use apenas os campos compatíveis conforme listado na seção Considerações. Todos os outros campos serão ignorados;

Para esquemas de amostra, consulte a seção Exemplos de esquemas e respostas de modelo.

Comportamento do modelo e esquema de resposta

Quando um modelo gera uma resposta, ele usa o nome do campo e o contexto do seu comando. Por isso, recomendamos que você use uma estrutura clara e sem nomes de campos ambíguos para que sua intent fique clara.

Por padrão, os campos são opcionais. Isso significa que o modelo pode preencher ou pular os campos. É possível definir campos conforme necessário para forçar o modelo a fornecer um valor. Se não houver contexto suficiente no comando de entrada associado, o modelo gera respostas principalmente com base nos dados em que foi treinado.

Se você não está vendo os resultados esperados, inclua mais contexto aos comandos de entrada ou revise seu esquema de resposta. Por exemplo, revise o modelo de resposta sem geração controlada para ver como o modelo responde. Depois, você pode atualizar o esquema de resposta que melhor se ajuste à saída do modelo.

Enviar um comando com um esquema de resposta

Por padrão, todos os campos são opcionais, o que significa que um modelo pode gerar uma resposta em um campo. Para forçar o modelo a sempre gerar uma resposta para um campo, defina o campo conforme necessário.

Python

Antes de testar esse exemplo, siga as instruções de configuração para Python no Guia de início rápido da Vertex AI sobre como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Vertex AI para Python.

Para autenticar na Vertex AI, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.

import vertexai

from vertexai.generative_models import GenerationConfig, GenerativeModel

# TODO(developer): Update and un-comment below line
# PROJECT_ID = "your-project-id"
vertexai.init(project=PROJECT_ID, location="us-central1")

response_schema = {
    "type": "array",
    "items": {
        "type": "object",
        "properties": {
            "recipe_name": {
                "type": "string",
            },
        },
        "required": ["recipe_name"],
    },
}

model = GenerativeModel("gemini-1.5-pro-002")

response = model.generate_content(
    "List a few popular cookie recipes",
    generation_config=GenerationConfig(
        response_mime_type="application/json", response_schema=response_schema
    ),
)

print(response.text)
# Example response:
# [
#     {"recipe_name": "Chocolate Chip Cookies"},
#     {"recipe_name": "Peanut Butter Cookies"},
#     {"recipe_name": "Snickerdoodles"},
#     {"recipe_name": "Oatmeal Raisin Cookies"},
# ]

REST

Antes de usar os dados da solicitação abaixo, faça as substituições a seguir:

  • GENERATE_RESPONSE_METHOD: o tipo de resposta que você quer que o modelo gere. Escolha um método que gere como você quer que a resposta do modelo seja retornada:
    • streamGenerateContent: a resposta é transmitida conforme é gerada para reduzir a percepção de latência para o público humano.
    • generateContent: a resposta será retornada depois de ser totalmente gerada.
  • LOCATION: a região para processar a solicitação.
  • PROJECT_ID: o ID do projeto.
  • MODEL_ID: o ID do modelo multimodal que você quer usar. As opções são:
    • gemini-1.5-pro
  • ROLE: O papel em uma conversa associada ao conteúdo. É necessário especificar um papel mesmo em casos de uso de turno único. Os valores aceitáveis são os seguintes:
    • USER: especifica o conteúdo que é enviado por você.
  • TEXT: as instruções de texto a serem incluídas no comando.
  • RESPONSE_MIME_TYPE: o tipo de formato do texto candidato gerado. Para uma lista de valores aceitos, consulte o parâmetro responseMimeType na API Gemini.
  • RESPONSE_SCHEMA: esquema do modelo que deve ser seguido ao gerar respostas. Para mais informações, consulte a referência Esquema.

Método HTTP e URL:

POST https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/publishers/google/models/MODEL_ID:GENERATE_RESPONSE_METHOD

Corpo JSON da solicitação:

{
  "contents": {
    "role": "ROLE",
    "parts": {
      "text": "TEXT"
    }
  },
  "generation_config": {
    "responseMimeType": "RESPONSE_MIME_TYPE",
    "responseSchema": RESPONSE_SCHEMA,
  }
}

Para enviar a solicitação, escolha uma destas opções:

curl

Salve o corpo da solicitação em um arquivo com o nome request.json e execute o comando a seguir:

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/publishers/google/models/MODEL_ID:GENERATE_RESPONSE_METHOD"

PowerShell

Salve o corpo da solicitação em um arquivo com o nome request.json e execute o comando a seguir:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/publishers/google/models/MODEL_ID:GENERATE_RESPONSE_METHOD" | Select-Object -Expand Content

Você receberá uma resposta JSON semelhante a seguinte.

Exemplo de comando curl

LOCATION="us-central1"
MODEL_ID="gemini-1.0-pro"
PROJECT_ID="test-project"
GENERATE_RESPONSE_METHOD="generateContent"

cat << EOF > request.json
{
  "contents": {
    "role": "user",
    "parts": {
      "text": "List a few popular cookie recipes."
    }
  },
  "generation_config": {
    "maxOutputTokens": 2048,
    "responseMimeType": "application/json",
    "responseSchema": {
      "type": "array",
      "items": {
        "type": "object",
        "properties": {
          "recipe_name": {
            "type": "string",
          },
        },
        "required": ["recipe_name"],
      },
    }
  }
}
EOF

curl \
-X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json" \
https://${LOCATION}-aiplatform.googleapis.com/v1/projects/${PROJECT_ID}/locations/${LOCATION}/publishers/google/models/${MODEL_ID}:${GENERATE_RESPONSE_METHOD} -d \
-d `@request.json`

Exemplos de esquemas e respostas de modelo

As seções a seguir mostram uma variedade de exemplos de comandos e esquemas de respostas. Uma resposta de modelo de amostra também é incluída após cada exemplo de código.

Resumir as análises das avaliações

O exemplo a seguir gera como saída uma matriz de objetos, na qual cada objeto tem duas propriedades: a classificação e o nome de um sabor de sorvete.

Python

Antes de testar esse exemplo, siga as instruções de configuração para Python no Guia de início rápido da Vertex AI sobre como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Vertex AI para Python.

Para autenticar na Vertex AI, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.

import vertexai

from vertexai.generative_models import GenerationConfig, GenerativeModel

# TODO(developer): Update and un-comment below line
# PROJECT_ID = "your-project-id"
vertexai.init(project=PROJECT_ID, location="us-central1")

response_schema = {
    "type": "ARRAY",
    "items": {
        "type": "ARRAY",
        "items": {
            "type": "OBJECT",
            "properties": {
                "rating": {"type": "INTEGER"},
                "flavor": {"type": "STRING"},
            },
        },
    },
}

prompt = """
    Reviews from our social media:
    - "Absolutely loved it! Best ice cream I've ever had." Rating: 4, Flavor: Strawberry Cheesecake
    - "Quite good, but a bit too sweet for my taste." Rating: 1, Flavor: Mango Tango
"""

model = GenerativeModel("gemini-1.5-pro-002")

response = model.generate_content(
    prompt,
    generation_config=GenerationConfig(
        response_mime_type="application/json", response_schema=response_schema
    ),
)

print(response.text)
# Example response:
# [
#     [
#         {"flavor": "Strawberry Cheesecake", "rating": 4},
#         {"flavor": "Mango Tango", "rating": 1},
#     ]
# ]

Exemplo de resposta do modelo

candidates {
  content {
    role: "model"
    parts {
      text: "[\n    [\n        {\n            \"rating\": 4\n        },\n        {\n            \"flavor\": \"Strawberry Cheesecake\"\n        },\n        {\n            \"rating\": 1\n        },\n        {\n            \"flavor\": \"Mango Tango\"\n        }\n    ]\n] "
    }
  }
  finish_reason: STOP
  safety_ratings {
    category: HARM_CATEGORY_HATE_SPEECH
    probability: NEGLIGIBLE
    probability_score: 0.1139734759926796
    severity: HARM_SEVERITY_NEGLIGIBLE
    severity_score: 0.10070161521434784
  }
  safety_ratings {
    category: HARM_CATEGORY_DANGEROUS_CONTENT
    probability: NEGLIGIBLE
    probability_score: 0.13695430755615234
    severity: HARM_SEVERITY_NEGLIGIBLE
    severity_score: 0.12241825461387634
  }
  safety_ratings {
    category: HARM_CATEGORY_HARASSMENT
    probability: NEGLIGIBLE
    probability_score: 0.11676400154829025
    severity: HARM_SEVERITY_NEGLIGIBLE
    severity_score: 0.05310790613293648
  }
  safety_ratings {
    category: HARM_CATEGORY_SEXUALLY_EXPLICIT
    probability: NEGLIGIBLE
    probability_score: 0.10521054267883301
    severity: HARM_SEVERITY_NEGLIGIBLE
    severity_score: 0.08299414813518524
  }
}
usage_metadata {
  prompt_token_count: 61
  candidates_token_count: 66
  total_token_count: 127
}

Estimar a previsão do tempo de cada dia da semana

O exemplo a seguir gera um objeto forecast para cada dia da semana que inclui uma matriz de propriedades, como a data e os níveis de temperatura e umidade esperados. Algumas propriedades estão definidas como anuláveis. Assim, o modelo pode retornar um valor nulo quando não tiver contexto suficiente para gerar uma resposta significativa. Essa estratégia ajuda a reduzir alucinações.

Python

Antes de testar esse exemplo, siga as instruções de configuração para Python no Guia de início rápido da Vertex AI sobre como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Vertex AI para Python.

Para autenticar na Vertex AI, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.

import vertexai

from vertexai.generative_models import GenerationConfig, GenerativeModel

# TODO(developer): Update and un-comment below line
# PROJECT_ID = "your-project-id"

vertexai.init(project=PROJECT_ID, location="us-central1")

response_schema = {
    "type": "OBJECT",
    "properties": {
        "forecast": {
            "type": "ARRAY",
            "items": {
                "type": "OBJECT",
                "properties": {
                    "Day": {"type": "STRING", "nullable": True},
                    "Forecast": {"type": "STRING", "nullable": True},
                    "Temperature": {"type": "INTEGER", "nullable": True},
                    "Humidity": {"type": "STRING", "nullable": True},
                    "Wind Speed": {"type": "INTEGER", "nullable": True},
                },
                "required": ["Day", "Temperature", "Forecast", "Wind Speed"],
            },
        }
    },
}

prompt = """
    The week ahead brings a mix of weather conditions.
    Sunday is expected to be sunny with a temperature of 77°F and a humidity level of 50%. Winds will be light at around 10 km/h.
    Monday will see partly cloudy skies with a slightly cooler temperature of 72°F and the winds will pick up slightly to around 15 km/h.
    Tuesday brings rain showers, with temperatures dropping to 64°F and humidity rising to 70%.
    Wednesday may see thunderstorms, with a temperature of 68°F.
    Thursday will be cloudy with a temperature of 66°F and moderate humidity at 60%.
    Friday returns to partly cloudy conditions, with a temperature of 73°F and the Winds will be light at 12 km/h.
    Finally, Saturday rounds off the week with sunny skies, a temperature of 80°F, and a humidity level of 40%. Winds will be gentle at 8 km/h.
"""

model = GenerativeModel("gemini-1.5-pro-002")

response = model.generate_content(
    prompt,
    generation_config=GenerationConfig(
        response_mime_type="application/json", response_schema=response_schema
    ),
)

print(response.text)
# Example response:
#  {"forecast": [{"Day": "Sunday", "Forecast": "Sunny", "Temperature": 77, "Humidity": "50%", "Wind Speed": 10},
#     {"Day": "Monday", "Forecast": "Partly Cloudy", "Temperature": 72, "Wind Speed": 15},
#     {"Day": "Tuesday", "Forecast": "Rain Showers", "Temperature": 64, "Humidity": "70%"},
#     {"Day": "Wednesday", "Forecast": "Thunderstorms", "Temperature": 68},
#     {"Day": "Thursday", "Forecast": "Cloudy", "Temperature": 66, "Humidity": "60%"},
#     {"Day": "Friday", "Forecast": "Partly Cloudy", "Temperature": 73, "Wind Speed": 12},
#     {"Day": "Saturday", "Forecast": "Sunny", "Temperature": 80, "Humidity": "40%", "Wind Speed": 8}]}

Exemplo de resposta do modelo

candidates {
  content {
    role: "model"
    parts {
      text: "{\"forecast\": [{\"Day\": \"Sunday\", \"Forecast\": \"sunny\", \"Humidity\": \"50%\", \"Temperature\": 77, \"Wind Speed\": 10}, {\"Day\": \"Monday\", \"Forecast\": \"partly cloudy\", \"Humidity\": null, \"Temperature\": 72, \"Wind Speed\": 15}, {\"Day\": \"Tuesday\", \"Forecast\": \"rain showers\", \"Humidity\": \"70%\", \"Temperature\": 64, \"Wind Speed\": null}, {\"Day\": \"Wednesday\", \"Forecast\": \"thunderstorms\", \"Humidity\": null, \"Temperature\": 68, \"Wind Speed\": null}, {\"Day\": \"Thursday\", \"Forecast\": \"cloudy\", \"Humidity\": \"60%\", \"Temperature\": 66, \"Wind Speed\": null}, {\"Day\": \"Friday\", \"Forecast\": \"partly cloudy\", \"Humidity\": null, \"Temperature\": 73, \"Wind Speed\": 12}, {\"Day\": \"Saturday\", \"Forecast\": \"sunny\", \"Humidity\": \"40%\", \"Temperature\": 80, \"Wind Speed\": 8}]}"
    }
  }
  finish_reason: STOP
  safety_ratings {
    category: HARM_CATEGORY_HATE_SPEECH
    probability: NEGLIGIBLE
    probability_score: 0.1037486344575882
    severity: HARM_SEVERITY_NEGLIGIBLE
    severity_score: 0.09670579433441162
  }
  safety_ratings {
    category: HARM_CATEGORY_DANGEROUS_CONTENT
    probability: NEGLIGIBLE
    probability_score: 0.18126320838928223
    severity: HARM_SEVERITY_NEGLIGIBLE
    severity_score: 0.10052486509084702
  }
  safety_ratings {
    category: HARM_CATEGORY_HARASSMENT
    probability: NEGLIGIBLE
    probability_score: 0.15960998833179474
    severity: HARM_SEVERITY_NEGLIGIBLE
    severity_score: 0.09518112242221832
  }
  safety_ratings {
    category: HARM_CATEGORY_SEXUALLY_EXPLICIT
    probability: NEGLIGIBLE
    probability_score: 0.1388116478919983
    severity: HARM_SEVERITY_NEGLIGIBLE
    severity_score: 0.10539454221725464
  }
}
usage_metadata {
  prompt_token_count: 280
  candidates_token_count: 249
  total_token_count: 529
}

Classificar um produto

O exemplo a seguir inclui tipos enumerados em que o modelo precisa classificar o tipo e a condição de um objeto em uma lista de valores fornecidos.

Python

Antes de testar esse exemplo, siga as instruções de configuração para Python no Guia de início rápido da Vertex AI sobre como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Vertex AI para Python.

Para autenticar na Vertex AI, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.

import vertexai

from vertexai.generative_models import GenerationConfig, GenerativeModel

# TODO(developer): Update and un-comment below line
# PROJECT_ID = "your-project-id"
vertexai.init(project=PROJECT_ID, location="us-central1")

response_schema = {
    "type": "ARRAY",
    "items": {
        "type": "OBJECT",
        "properties": {
            "to_discard": {"type": "INTEGER"},
            "subcategory": {"type": "STRING"},
            "safe_handling": {"type": "INTEGER"},
            "item_category": {
                "type": "STRING",
                "enum": [
                    "clothing",
                    "winter apparel",
                    "specialized apparel",
                    "furniture",
                    "decor",
                    "tableware",
                    "cookware",
                    "toys",
                ],
            },
            "for_resale": {"type": "INTEGER"},
            "condition": {
                "type": "STRING",
                "enum": [
                    "new in package",
                    "like new",
                    "gently used",
                    "used",
                    "damaged",
                    "soiled",
                ],
            },
        },
    },
}

prompt = """
    Item description:
    The item is a long winter coat that has many tears all around the seams and is falling apart.
    It has large questionable stains on it.
"""

model = GenerativeModel("gemini-1.5-pro-002")

response = model.generate_content(
    prompt,
    generation_config=GenerationConfig(
        response_mime_type="application/json", response_schema=response_schema
    ),
)

print(response.text)
# Example response:
# [
#     {
#         "condition": "damaged",
#         "item_category": "clothing",
#         "subcategory": "winter apparel",
#         "to_discard": 123,
#     }
# ]

Exemplo de resposta do modelo

candidates {
  content {
    role: "model"
    parts {
      text: " [{\n    \"item_category\": \"winter apparel\",\n    \"subcategory\": \"coat\",\n    \"to_discard\":  1\n  }] "
    }
  }
  finish_reason: STOP
  safety_ratings {
    category: HARM_CATEGORY_HATE_SPEECH
    probability: NEGLIGIBLE
    probability_score: 0.08945459872484207
    severity: HARM_SEVERITY_NEGLIGIBLE
    severity_score: 0.13753245770931244
  }
  safety_ratings {
    category: HARM_CATEGORY_DANGEROUS_CONTENT
    probability: NEGLIGIBLE
    probability_score: 0.19208428263664246
    severity: HARM_SEVERITY_LOW
    severity_score: 0.23810701072216034
  }
  safety_ratings {
    category: HARM_CATEGORY_HARASSMENT
    probability: NEGLIGIBLE
    probability_score: 0.07585817575454712
    severity: HARM_SEVERITY_NEGLIGIBLE
    severity_score: 0.04336579889059067
  }
  safety_ratings {
    category: HARM_CATEGORY_SEXUALLY_EXPLICIT
    probability: NEGLIGIBLE
    probability_score: 0.12667709589004517
    severity: HARM_SEVERITY_NEGLIGIBLE
    severity_score: 0.07396338135004044
  }
}
usage_metadata {
  prompt_token_count: 38
  candidates_token_count: 33
  total_token_count: 71
}

Identificar objetos em imagens

O exemplo a seguir identifica objetos de duas imagens que são armazenadas no Cloud Storage.

Python

Antes de testar esse exemplo, siga as instruções de configuração para Python no Guia de início rápido da Vertex AI sobre como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Vertex AI para Python.

Para autenticar na Vertex AI, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.

import vertexai

from vertexai.generative_models import GenerationConfig, GenerativeModel, Part

# TODO(developer): Update and un-comment below line
# PROJECT_ID = "your-project-id"
vertexai.init(project=PROJECT_ID, location="us-central1")

response_schema = {
    "type": "ARRAY",
    "items": {
        "type": "ARRAY",
        "items": {
            "type": "OBJECT",
            "properties": {
                "object": {"type": "STRING"},
            },
        },
    },
}

model = GenerativeModel("gemini-1.5-pro-002")

response = model.generate_content(
    [
        # Text prompt
        "Generate a list of objects in the images.",
        # Http Image
        Part.from_uri(
            "https://storage.googleapis.com/cloud-samples-data/generative-ai/image/office-desk.jpeg",
            "image/jpeg",
        ),
        # Cloud storage object
        Part.from_uri(
            "gs://cloud-samples-data/generative-ai/image/gardening-tools.jpeg",
            "image/jpeg",
        ),
    ],
    generation_config=GenerationConfig(
        response_mime_type="application/json", response_schema=response_schema
    ),
)

print(response.text)
# Example response:
# [
#     [
#         {"object": "globe"}, {"object": "tablet"}, {"object": "toy car"},
#         {"object": "airplane"}, {"object": "keyboard"}, {"object": "mouse"},
#         {"object": "passport"}, {"object": "sunglasses"}, {"object": "money"},
#         {"object": "notebook"}, {"object": "pen"}, {"object": "coffee cup"},
#     ],
#     [
#         {"object": "watering can"}, {"object": "plant"}, {"object": "flower pot"},
#         {"object": "gloves"}, {"object": "garden tool"},
#     ],
# ]

Exemplo de resposta do modelo

candidates {
  content {
    role: "model"
    parts {
      text: "[\n    [\n        {\n            \"object\": \"globe model\"\n        },\n        {\n            \"object\": \"tablet computer\"\n        },\n        {\n            \"object\": \"shopping cart\"\n        },\n        {\n            \"object\": \"Eiffel Tower model\"\n        },\n        {\n            \"object\": \"airplane model\"\n        },\n        {\n            \"object\": \"coffee cup\"\n        },\n        {\n            \"object\": \"computer keyboard\"\n        },\n        {\n            \"object\": \"computer mouse\"\n        },\n        {\n            \"object\": \"passport\"\n        },\n        {\n            \"object\": \"sunglasses\"\n        },\n        {\n            \"object\": \"US Dollar bills\"\n        },\n        {\n            \"object\": \"notepad\"\n        },\n        {\n            \"object\": \"pen\"\n        }\n    ],\n    [\n        {\n            \"object\": \"watering can\"\n        },\n        {\n            \"object\": \"oregano\"\n        },\n        {\n            \"object\": \"flower pot\"\n        },\n        {\n            \"object\": \"flower pot\"\n        },\n        {\n            \"object\": \"gardening gloves\"\n        },\n        {\n            \"object\": \"hand rake\"\n        },\n        {\n            \"object\": \"hand trowel\"\n        },\n        {\n            \"object\": \"grass\"\n        }\n    ]\n] "
    }
  }
  finish_reason: STOP
  safety_ratings {
    category: HARM_CATEGORY_HATE_SPEECH
    probability: NEGLIGIBLE
    probability_score: 0.1872812658548355
    severity: HARM_SEVERITY_NEGLIGIBLE
    severity_score: 0.16357900202274323
  }
  safety_ratings {
    category: HARM_CATEGORY_DANGEROUS_CONTENT
    probability: LOW
    probability_score: 0.37920594215393066
    severity: HARM_SEVERITY_LOW
    severity_score: 0.29320207238197327
  }
  safety_ratings {
    category: HARM_CATEGORY_HARASSMENT
    probability: NEGLIGIBLE
    probability_score: 0.14175598323345184
    severity: HARM_SEVERITY_NEGLIGIBLE
    severity_score: 0.12074951827526093
  }
  safety_ratings {
    category: HARM_CATEGORY_SEXUALLY_EXPLICIT
    probability: NEGLIGIBLE
    probability_score: 0.12241825461387634
    severity: HARM_SEVERITY_NEGLIGIBLE
    severity_score: 0.0955180674791336
  }
}
usage_metadata {
  prompt_token_count: 525
  candidates_token_count: 333
  total_token_count: 858
}

Responder com um único valor de tipo enumerado de texto simples

O exemplo a seguir identifica o gênero de um filme com base na descrição dele. A saída é um valor de tipo enumerado de texto simples que o modelo seleciona de uma lista de valores definidos no esquema de resposta.

Python

Antes de testar esse exemplo, siga as instruções de configuração para Python no Guia de início rápido da Vertex AI sobre como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Vertex AI para Python.

Para autenticar na Vertex AI, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.

import vertexai

from vertexai.generative_models import GenerationConfig, GenerativeModel

# TODO(developer): Update and un-comment below line
# PROJECT_ID = "your-project-id"

vertexai.init(project=PROJECT_ID, location="us-central1")

model = GenerativeModel("gemini-1.5-pro")

response_schema = {"type": "STRING", "enum": ["drama", "comedy", "documentary"]}

prompt = (
    "The film aims to educate and inform viewers about real-life subjects, events, or people."
    "It offers a factual record of a particular topic by combining interviews, historical footage, "
    "and narration. The primary purpose of a film is to present information and provide insights "
    "into various aspects of reality."
)

response = model.generate_content(
    prompt,
    generation_config=GenerationConfig(
        response_mime_type="text/x.enum", response_schema=response_schema
    ),
)

print(response.text)
# Example response:
#     'documentary'

Exemplo de resposta do modelo

candidates {
  content {
    role: "model"
    parts {
      text: "documentary"
    }
  }
  finish_reason: STOP
  safety_ratings {
    category: HARM_CATEGORY_HATE_SPEECH
    probability: NEGLIGIBLE
    probability_score: 0.051025390625
    severity: HARM_SEVERITY_NEGLIGIBLE
    severity_score: 0.08056640625
  }
  safety_ratings {
    category: HARM_CATEGORY_DANGEROUS_CONTENT
    probability: NEGLIGIBLE
    probability_score: 0.1416015625
    severity: HARM_SEVERITY_NEGLIGIBLE
    severity_score: 0.068359375
  }
  safety_ratings {
    category: HARM_CATEGORY_HARASSMENT
    probability: NEGLIGIBLE
    probability_score: 0.11572265625
    severity: HARM_SEVERITY_NEGLIGIBLE
    severity_score: 0.0439453125
  }
  safety_ratings {
    category: HARM_CATEGORY_SEXUALLY_EXPLICIT
    probability: NEGLIGIBLE
    probability_score: 0.099609375
    severity: HARM_SEVERITY_NEGLIGIBLE
    severity_score: 0.146484375
  }
  avg_logprobs: -8.783838711678982e-05
}
usage_metadata {
  prompt_token_count: 33
  candidates_token_count: 2
  total_token_count: 35
}