Previsão em lote

A predição em lote é uma técnica valiosa para aplicar modelos de aprendizado de máquina a conjuntos de dados grandes de maneira eficiente. Em vez de processar pontos de dados individuais, você pode enviar um lote de dados para a previsão do Gemini, economizando tempo e recursos computacionais. Ao contrário da previsão on-line, em que você está limitado a um comando de entrada por vez, é possível enviar um grande número de solicitações multimodais em um único comando em lote. Em seguida, suas respostas são preenchidas de forma assíncrona no local de saída do armazenamento do BigQuery ou do Cloud Storage.

As solicitações em lote para modelos do Gemini têm desconto de 50% em relação a solicitações padrão. Para saber mais, consulte a página de preços.

Caso de uso de previsão em lote

Considere uma livraria on-line com milhares de livros no banco de dados. Em vez de gerar descrições individualmente para cada livro, o que seria demorado, essa loja pode usar a previsão em lote do Gemini para processar todas as informações do livro de uma vez. Essa abordagem melhora drasticamente a eficiência, reduzindo o tempo de processamento geral e minimizando os recursos computacionais necessários.

A predição em lote também pode melhorar a consistência com a automação. Ao processar todas as descrições simultaneamente, o modelo mantém um tom e estilo uniforme nas descrições do livro, reforçando a identidade da marca. Essa livraria também pode integrar a previsão em lote ao fluxo de trabalho para gerar descrições automaticamente para novas entradas de livros, eliminando o esforço manual e garantindo que o site permaneça atualizado com a intervenção humana mínima.

Modelos multimodais compatíveis com previsões em lote

Os modelos multimodais a seguir são compatíveis com previsões em lote.

  • gemini-1.5-flash-002
  • gemini-1.5-flash-001
  • gemini-1.5-pro-002
  • gemini-1.5-pro-001
  • gemini-1.0-pro-002
  • gemini-1.0-pro-001

As solicitações em lote para modelos multimodais aceitam origens de armazenamento do BigQuery e do Cloud Storage. Você pode escolher se quer gerar previsões em uma tabela do BigQuery ou em um arquivo JSONL em um bucket do Cloud Storage.

Predição em lote para o Cloud Storage

Preparar suas entradas

Entrada do Cloud Storage

  • Formato do arquivo: linhas JSON (JSONL)
  • Localizado em us-central1
  • Permissões de leitura adequadas para a conta de serviço
  • O suporte para fileData é limitado a alguns modelos do Gemini.
    Exemplo de entrada (JSONL)
    
    {"request":{"contents": [{"role": "user", "parts": [{"text": "What is the relation between the following video and image samples?"}, {"fileData": {"fileUri": "gs://cloud-samples-data/generative-ai/video/animals.mp4", "mimeType": "video/mp4"}}, {"fileData": {"fileUri": "gs://cloud-samples-data/generative-ai/image/cricket.jpeg", "mimeType": "image/jpeg"}}]}]}}
    {"request":{"contents": [{"role": "user", "parts": [{"text": "Describe what is happening in this video."}, {"fileData": {"fileUri": "gs://cloud-samples-data/generative-ai/video/another_video.mov", "mimeType": "video/mov"}}]}]}}
        

Solicitar um job de previsão em lote

Especifique a tabela de entrada, o modelo e o local de saída do Cloud Storage.

REST

Para criar um job de previsão em lote, use o método projects.locations.batchPredictionJobs.create.

Antes de usar os dados da solicitação abaixo, faça as substituições a seguir:

  • LOCATION: uma região compatível com modelos Gemini.
  • PROJECT_ID: o ID do projeto.
  • INPUT_URI: o local do Cloud Storage da entrada de previsão em lote JSONL, como gs://bucketname/path/to/file.jsonl.
  • OUTPUT_FORMAT: para gerar saída em uma tabela do BigQuery, especifique bigquery. Para gerar saída em um bucket do Cloud Storage, especifique jsonl.
  • DESTINATION: para o BigQuery, especifique bigqueryDestination. Para o Cloud Storage, especifique gcsDestination.
  • OUTPUT_URI_FIELD_NAME: para o BigQuery, especifique outputUri. Para o Cloud Storage, especifique outputUriPrefix.
  • OUTPUT_URI: para o BigQuery, especifique o local da tabela, como bq://myproject.mydataset.output_result. A região do conjunto de dados de saída do BigQuery precisa ser a mesma do job de previsão em lote da Vertex AI. Para o Cloud Storage, especifique o bucket e o local do diretório, como gs://mybucket/path/to/output.

Método HTTP e URL:

POST https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/batchPredictionJobs

Corpo JSON da solicitação:

{
  "displayName": "my-cloud-storage-batch-prediction-job",
  "model": "publishers/google/models/gemini-1.5-flash-002",
  "inputConfig": {
    "instancesFormat": "jsonl",
    "gcsSource": {
      "uris" : "INPUT_URI"
    }
  },
  "outputConfig": {
    "predictionsFormat": "OUTPUT_FORMAT",
    "DESTINATION": {
      "OUTPUT_URI_FIELD_NAME": "OUTPUT_URI"
    }
  }
}

Para enviar a solicitação, escolha uma destas opções:

curl

Salve o corpo da solicitação em um arquivo com o nome request.json e execute o comando a seguir:

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/batchPredictionJobs"

PowerShell

Salve o corpo da solicitação em um arquivo com o nome request.json e execute o comando a seguir:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/batchPredictionJobs" | Select-Object -Expand Content

Você receberá uma resposta JSON semelhante a seguinte.

A resposta inclui um identificador exclusivo para a tarefa em lote. É possível pesquisar o status da tarefa em lote usando BATCH_JOB_ID até que o job state seja JOB_STATE_SUCCEEDED. Exemplo:

curl \
  -X GET \
  -H "Authorization: Bearer $(gcloud auth print-access-token)" \
  -H "Content-Type: application/json" \
https://us-central1-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/us-central1/batchPredictionJobs/BATCH_JOB_ID

Python

Para saber como instalar o SDK da Vertex AI para Python, consulte Instalar o SDK da Vertex AI para Python. Para mais informações, consulte a documentação de referência da API Python.

import time
import vertexai

from vertexai.batch_prediction import BatchPredictionJob

# TODO(developer): Update and un-comment below line
# PROJECT_ID = "your-project-id"

# Initialize vertexai
vertexai.init(project=PROJECT_ID, location="us-central1")

input_uri = "gs://cloud-samples-data/batch/prompt_for_batch_gemini_predict.jsonl"

# Submit a batch prediction job with Gemini model
batch_prediction_job = BatchPredictionJob.submit(
    source_model="gemini-1.5-flash-002",
    input_dataset=input_uri,
    output_uri_prefix=output_uri,
)

# Check job status
print(f"Job resource name: {batch_prediction_job.resource_name}")
print(f"Model resource name with the job: {batch_prediction_job.model_name}")
print(f"Job state: {batch_prediction_job.state.name}")

# Refresh the job until complete
while not batch_prediction_job.has_ended:
    time.sleep(5)
    batch_prediction_job.refresh()

# Check if the job succeeds
if batch_prediction_job.has_succeeded:
    print("Job succeeded!")
else:
    print(f"Job failed: {batch_prediction_job.error}")

# Check the location of the output
print(f"Job output location: {batch_prediction_job.output_location}")

# Example response:
#  Job output location: gs://your-bucket/gen-ai-batch-prediction/prediction-model-year-month-day-hour:minute:second.12345

Node.js

Antes de testar esse exemplo, siga as instruções de configuração para Node.js no Guia de início rápido da Vertex AI sobre como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Vertex AI para Node.js.

Para autenticar na Vertex AI, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.

// Import the aiplatform library
const aiplatformLib = require('@google-cloud/aiplatform');
const aiplatform = aiplatformLib.protos.google.cloud.aiplatform.v1;

/**
 * TODO(developer):  Uncomment/update these variables before running the sample.
 */
// projectId = 'YOUR_PROJECT_ID';
// URI of the output folder in Google Cloud Storage.
// E.g. "gs://[BUCKET]/[OUTPUT]"
// outputUri = 'gs://my-bucket';

// URI of the input file in Google Cloud Storage.
// E.g. "gs://[BUCKET]/[DATASET].jsonl"
// Or try:
// "gs://cloud-samples-data/generative-ai/batch/gemini_multimodal_batch_predict.jsonl"
// for a batch prediction that uses audio, video, and an image.
const inputUri =
  'gs://cloud-samples-data/generative-ai/batch/batch_requests_for_multimodal_input.jsonl';
const location = 'us-central1';
const parent = `projects/${projectId}/locations/${location}`;
const modelName = `${parent}/publishers/google/models/gemini-1.5-flash-002`;

// Specify the location of the api endpoint.
const clientOptions = {
  apiEndpoint: `${location}-aiplatform.googleapis.com`,
};

// Instantiate the client.
const jobServiceClient = new aiplatformLib.JobServiceClient(clientOptions);

// Create a Gemini batch prediction job using Google Cloud Storage input and output buckets.
async function create_batch_prediction_gemini_gcs() {
  const gcsSource = new aiplatform.GcsSource({
    uris: [inputUri],
  });

  const inputConfig = new aiplatform.BatchPredictionJob.InputConfig({
    gcsSource: gcsSource,
    instancesFormat: 'jsonl',
  });

  const gcsDestination = new aiplatform.GcsDestination({
    outputUriPrefix: outputUri,
  });

  const outputConfig = new aiplatform.BatchPredictionJob.OutputConfig({
    gcsDestination: gcsDestination,
    predictionsFormat: 'jsonl',
  });

  const batchPredictionJob = new aiplatform.BatchPredictionJob({
    displayName: 'Batch predict with Gemini - GCS',
    model: modelName,
    inputConfig: inputConfig,
    outputConfig: outputConfig,
  });

  const request = {
    parent: parent,
    batchPredictionJob,
  };

  // Create batch prediction job request
  const [response] = await jobServiceClient.createBatchPredictionJob(request);
  console.log('Response name: ', response.name);
  // Example response:
  // Response name: projects/<project>/locations/us-central1/batchPredictionJobs/<job-id>
}

await create_batch_prediction_gemini_gcs();

Java

Antes de testar esse exemplo, siga as instruções de configuração para Java no Guia de início rápido da Vertex AI sobre como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Vertex AI para Java.

Para autenticar na Vertex AI, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.

import com.google.cloud.aiplatform.v1.BatchPredictionJob;
import com.google.cloud.aiplatform.v1.GcsDestination;
import com.google.cloud.aiplatform.v1.GcsSource;
import com.google.cloud.aiplatform.v1.JobServiceClient;
import com.google.cloud.aiplatform.v1.JobServiceSettings;
import com.google.cloud.aiplatform.v1.LocationName;
import java.io.IOException;

public class CreateBatchPredictionGeminiJobSample {

  public static void main(String[] args) throws IOException {
    // TODO(developer): Update these variables before running the sample.
    String project = "PROJECT_ID";
    String gcsDestinationOutputUriPrefix = "gs://MY_BUCKET/";

    createBatchPredictionGeminiJobSample(project, gcsDestinationOutputUriPrefix);
  }

  // Create a batch prediction job using a JSONL input file and output URI, both in Cloud
  // Storage.
  public static BatchPredictionJob createBatchPredictionGeminiJobSample(
      String project, String gcsDestinationOutputUriPrefix) throws IOException {
    String location = "us-central1";
    JobServiceSettings settings =
        JobServiceSettings.newBuilder()
            .setEndpoint(String.format("%s-aiplatform.googleapis.com:443", location))
            .build();

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests.
    try (JobServiceClient client = JobServiceClient.create(settings)) {
      GcsSource gcsSource =
          GcsSource.newBuilder()
              .addUris(
                  "gs://cloud-samples-data/generative-ai/batch/"
                      + "batch_requests_for_multimodal_input.jsonl")
              // Or try
              // "gs://cloud-samples-data/generative-ai/batch/gemini_multimodal_batch_predict.jsonl"
              // for a batch prediction that uses audio, video, and an image.
              .build();
      BatchPredictionJob.InputConfig inputConfig =
          BatchPredictionJob.InputConfig.newBuilder()
              .setInstancesFormat("jsonl")
              .setGcsSource(gcsSource)
              .build();
      GcsDestination gcsDestination =
          GcsDestination.newBuilder().setOutputUriPrefix(gcsDestinationOutputUriPrefix).build();
      BatchPredictionJob.OutputConfig outputConfig =
          BatchPredictionJob.OutputConfig.newBuilder()
              .setPredictionsFormat("jsonl")
              .setGcsDestination(gcsDestination)
              .build();
      String modelName =
          String.format(
              "projects/%s/locations/%s/publishers/google/models/%s",
              project, location, "gemini-1.5-flash-002");

      BatchPredictionJob batchPredictionJob =
          BatchPredictionJob.newBuilder()
              .setDisplayName("my-display-name")
              .setModel(modelName) // Add model parameters per request in the input jsonl file.
              .setInputConfig(inputConfig)
              .setOutputConfig(outputConfig)
              .build();

      LocationName parent = LocationName.of(project, location);
      BatchPredictionJob response = client.createBatchPredictionJob(parent, batchPredictionJob);
      System.out.format("\tName: %s\n", response.getName());
      // Example response:
      //   Name: projects/<project>/locations/us-central1/batchPredictionJobs/<job-id>
      return response;
    }
  }
}

Go

Antes de testar esse exemplo, siga as instruções de configuração para Go no Guia de início rápido da Vertex AI sobre como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Vertex AI para Go.

Para autenticar na Vertex AI, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.

import (
	"context"
	"fmt"
	"io"
	"time"

	aiplatform "cloud.google.com/go/aiplatform/apiv1"
	aiplatformpb "cloud.google.com/go/aiplatform/apiv1/aiplatformpb"

	"google.golang.org/api/option"
	"google.golang.org/protobuf/types/known/structpb"
)

// batchPredictGCS submits a batch prediction job using GCS data source as its input
func batchPredictGCS(w io.Writer, projectID, location string, inputURIs []string, outputURI string) error {
	// location := "us-central1"
	// inputURIs := []string{"gs://cloud-samples-data/batch/prompt_for_batch_gemini_predict.jsonl"}
	// outputURI := "gs://<cloud-bucket-name>/<prefix-name>"
	modelName := "gemini-1.5-pro-002"
	jobName := "batch-predict-gcs-test-001"

	ctx := context.Background()
	apiEndpoint := fmt.Sprintf("%s-aiplatform.googleapis.com:443", location)
	client, err := aiplatform.NewJobClient(ctx, option.WithEndpoint(apiEndpoint))
	if err != nil {
		return fmt.Errorf("unable to create aiplatform client: %w", err)
	}
	defer client.Close()

	modelParameters, err := structpb.NewValue(map[string]interface{}{
		"temperature":     0.2,
		"maxOutputTokens": 200,
	})
	if err != nil {
		return fmt.Errorf("unable to convert model parameters to protobuf value: %w", err)
	}

	req := &aiplatformpb.CreateBatchPredictionJobRequest{
		Parent: fmt.Sprintf("projects/%s/locations/%s", projectID, location),
		BatchPredictionJob: &aiplatformpb.BatchPredictionJob{
			DisplayName:     jobName,
			Model:           fmt.Sprintf("publishers/google/models/%s", modelName),
			ModelParameters: modelParameters,
			// Check the API reference for `BatchPredictionJob` for supported input and output formats:
			// https://cloud.google.com/vertex-ai/docs/reference/rpc/google.cloud.aiplatform.v1#google.cloud.aiplatform.v1.BatchPredictionJob
			InputConfig: &aiplatformpb.BatchPredictionJob_InputConfig{
				Source: &aiplatformpb.BatchPredictionJob_InputConfig_GcsSource{
					GcsSource: &aiplatformpb.GcsSource{
						Uris: inputURIs,
					},
				},
				InstancesFormat: "jsonl",
			},
			OutputConfig: &aiplatformpb.BatchPredictionJob_OutputConfig{
				Destination: &aiplatformpb.BatchPredictionJob_OutputConfig_GcsDestination{
					GcsDestination: &aiplatformpb.GcsDestination{
						OutputUriPrefix: outputURI,
					},
				},
				PredictionsFormat: "jsonl",
			},
		},
	}

	job, err := client.CreateBatchPredictionJob(ctx, req)
	if err != nil {
		return err
	}
	fullJobId := job.GetName()
	fmt.Fprintf(w, "submitted batch predict job for model %q\n", job.GetModel())
	fmt.Fprintf(w, "job id: %q\n", fullJobId)
	fmt.Fprintf(w, "job state: %s\n", job.GetState())
	// Example response:
	// submitted batch predict job for model "publishers/google/models/gemini-1.5-pro-002"
	// job id: "projects/.../locations/.../batchPredictionJobs/1234567890000000000"
	// job state: JOB_STATE_PENDING

	for {
		time.Sleep(5 * time.Second)

		job, err := client.GetBatchPredictionJob(ctx, &aiplatformpb.GetBatchPredictionJobRequest{
			Name: fullJobId,
		})
		if err != nil {
			return fmt.Errorf("error: couldn't get updated job state: %w", err)
		}

		if job.GetEndTime() != nil {
			fmt.Fprintf(w, "batch predict job finished with state %s\n", job.GetState())
			break
		} else {
			fmt.Fprintf(w, "batch predict job is running... job state is %s\n", job.GetState())
		}
	}

	return nil
}

Saída da previsão em lote

Quando uma tarefa de previsão em lote é concluída, a saída é armazenada no bucket do Cloud Storage ou na tabela do BigQuery especificada na solicitação. Para linhas com sucesso, as respostas do modelo são armazenadas na coluna response. Caso contrário, os detalhes do erro são armazenados na coluna status para uma inspeção mais detalhada.

Durante jobs de longa duração, as previsões concluídas são exportadas continuamente para o destino de saída especificado. Isso começa após 90 minutos. Se o job de previsão em lote for cancelado ou falhar, todas as previsões concluídas serão exportadas.

Exemplo de saída do Cloud Storage

{
  "status": "",
  "processed_time": "2024-11-01T18:13:16.826+00:00",
  "request": {
    "contents": [
      {
        "parts": [
          {
            "fileData": null,
            "text": "What is the relation between the following video and image samples?"
          },
          {
            "fileData": {
              "fileUri": "gs://cloud-samples-data/generative-ai/video/animals.mp4",
              "mimeType": "video/mp4"
            },
            "text": null
          },
          {
            "fileData": {
              "fileUri": "gs://cloud-samples-data/generative-ai/image/cricket.jpeg",
              "mimeType": "image/jpeg"
            },
            "text": null
          }
        ],
        "role": "user"
      }
    ]
  },
  "response": {
    "candidates": [
      {
        "avgLogprobs": -0.5782725546095107,
        "content": {
          "parts": [
            {
              "text": "This video shows a Google Photos marketing campaign where animals at the Los Angeles Zoo take self-portraits using a modified Google phone housed in a protective case. The image is unrelated."
            }
          ],
          "role": "model"
        },
        "finishReason": "STOP"
      }
    ],
    "modelVersion": "gemini-1.5-flash-002@default",
    "usageMetadata": {
      "candidatesTokenCount": 36,
      "promptTokenCount": 29180,
      "totalTokenCount": 29216
    }
  }
}

Previsão em lote para o BigQuery

Especifique a tabela de entrada, o modelo e o local de saída do BigQuery. O job de previsão em lote e a tabela precisam estar na mesma região.

Preparar suas entradas

Entrada de armazenamento do BigQuery

  • Uma coluna request é necessária e precisa ser um JSON válido. Esses dados JSON representam sua entrada para o modelo.
  • O conteúdo da coluna request precisa corresponder à estrutura de um GenerateContentRequest.
  • A tabela de entrada pode ter tipos de dados de coluna diferentes de request. Essas colunas podem ter tipos de dados do BigQuery, exceto: matriz, struct, intervalo, data e hora e geografia. Essas colunas são ignoradas para geração de conteúdo, mas incluídas na tabela de saída. O sistema reserva dois nomes de colunas para a saída: response e status. Eles são usados para fornecer informações sobre o resultado do job de previsão em lote.
  • O suporte para fileData é limitado a alguns modelos do Gemini.
Exemplo de entrada (JSON)
        
{
  "contents": [
    {
      "role": "user",
      "parts": [
        {
          "text": "Give me a recipe for banana bread."
        }
      ]
    }
  ],
  "system_instruction": {
    "parts": [
      {
        "text": "You are a chef."
      }
    ]
  }
}
        
        

Solicitar um job de previsão em lote

REST

Para criar um job de previsão em lote, use o método projects.locations.batchPredictionJobs.create.

Antes de usar os dados da solicitação abaixo, faça as substituições a seguir:

  • LOCATION: uma região compatível com modelos Gemini.
  • PROJECT_ID: o ID do projeto.
  • INPUT_URI: a tabela do BigQuery em que a entrada de previsão em lote está localizada, como bq://myproject.mydataset.input_table. Não há suporte para conjuntos de dados multirregionais.
  • OUTPUT_FORMAT: para gerar saída em uma tabela do BigQuery, especifique bigquery. Para gerar saída em um bucket do Cloud Storage, especifique jsonl.
  • DESTINATION: para o BigQuery, especifique bigqueryDestination. Para o Cloud Storage, especifique gcsDestination.
  • OUTPUT_URI_FIELD_NAME: para o BigQuery, especifique outputUri. Para o Cloud Storage, especifique outputUriPrefix.
  • OUTPUT_URI: para o BigQuery, especifique o local da tabela, como bq://myproject.mydataset.output_result. A região do conjunto de dados de saída do BigQuery precisa ser a mesma do job de previsão em lote da Vertex AI. Para o Cloud Storage, especifique o bucket e o local do diretório, como gs://mybucket/path/to/output.

Método HTTP e URL:

POST https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/batchPredictionJobs

Corpo JSON da solicitação:

{
  "displayName": "my-bigquery-batch-prediction-job",
  "model": "publishers/google/models/gemini-1.5-flash-002",
  "inputConfig": {
    "instancesFormat": "bigquery",
    "bigquerySource":{
      "inputUri" : "INPUT_URI"
    }
  },
  "outputConfig": {
    "predictionsFormat": "OUTPUT_FORMAT",
    "DESTINATION": {
      "OUTPUT_URI_FIELD_NAME": "OUTPUT_URI"
    }
  }
}

Para enviar a solicitação, escolha uma destas opções:

curl

Salve o corpo da solicitação em um arquivo com o nome request.json e execute o comando a seguir:

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/batchPredictionJobs"

PowerShell

Salve o corpo da solicitação em um arquivo com o nome request.json e execute o comando a seguir:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/batchPredictionJobs" | Select-Object -Expand Content

Você receberá uma resposta JSON semelhante a seguinte.

A resposta inclui um identificador exclusivo para a tarefa em lote. É possível pesquisar o status da tarefa em lote usando BATCH_JOB_ID até que o job state seja JOB_STATE_SUCCEEDED. Exemplo:

curl \
  -X GET \
  -H "Authorization: Bearer $(gcloud auth print-access-token)" \
  -H "Content-Type: application/json" \
https://us-central1-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/us-central1/batchPredictionJobs/BATCH_JOB_ID

Python

Antes de testar esse exemplo, siga as instruções de configuração para Python no Guia de início rápido da Vertex AI sobre como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Vertex AI para Python.

Para autenticar na Vertex AI, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.

import time
import vertexai

from vertexai.batch_prediction import BatchPredictionJob

# TODO(developer): Update and un-comment below line
# PROJECT_ID = "your-project-id"

# Initialize vertexai
vertexai.init(project=PROJECT_ID, location="us-central1")

input_uri = "bq://storage-samples.generative_ai.batch_requests_for_multimodal_input"

# Submit a batch prediction job with Gemini model
batch_prediction_job = BatchPredictionJob.submit(
    source_model="gemini-1.5-flash-002",
    input_dataset=input_uri,
    output_uri_prefix=output_uri,
)

# Check job status
print(f"Job resource name: {batch_prediction_job.resource_name}")
print(f"Model resource name with the job: {batch_prediction_job.model_name}")
print(f"Job state: {batch_prediction_job.state.name}")

# Refresh the job until complete
while not batch_prediction_job.has_ended:
    time.sleep(5)
    batch_prediction_job.refresh()

# Check if the job succeeds
if batch_prediction_job.has_succeeded:
    print("Job succeeded!")
else:
    print(f"Job failed: {batch_prediction_job.error}")

# Check the location of the output
print(f"Job output location: {batch_prediction_job.output_location}")

# Example response:
#  Job output location: bq://Project-ID/gen-ai-batch-prediction/predictions-model-year-month-day-hour:minute:second.12345

Node.js

Antes de testar esse exemplo, siga as instruções de configuração para Node.js no Guia de início rápido da Vertex AI sobre como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Vertex AI para Node.js.

Para autenticar na Vertex AI, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.

// Import the aiplatform library
const aiplatformLib = require('@google-cloud/aiplatform');
const aiplatform = aiplatformLib.protos.google.cloud.aiplatform.v1;

/**
 * TODO(developer):  Uncomment/update these variables before running the sample.
 */
// projectId = 'YOUR_PROJECT_ID';
// URI of the output BigQuery table.
// E.g. "bq://[PROJECT].[DATASET].[TABLE]"
// outputUri = 'bq://projectid.dataset.table';

// URI of the multimodal input BigQuery table.
// E.g. "bq://[PROJECT].[DATASET].[TABLE]"
const inputUri =
  'bq://storage-samples.generative_ai.batch_requests_for_multimodal_input';
const location = 'us-central1';
const parent = `projects/${projectId}/locations/${location}`;
const modelName = `${parent}/publishers/google/models/gemini-1.5-flash-002`;

// Specify the location of the api endpoint.
const clientOptions = {
  apiEndpoint: `${location}-aiplatform.googleapis.com`,
};

// Instantiate the client.
const jobServiceClient = new aiplatformLib.JobServiceClient(clientOptions);

// Create a Gemini batch prediction job using BigQuery input and output datasets.
async function create_batch_prediction_gemini_bq() {
  const bqSource = new aiplatform.BigQuerySource({
    inputUri: inputUri,
  });

  const inputConfig = new aiplatform.BatchPredictionJob.InputConfig({
    bigquerySource: bqSource,
    instancesFormat: 'bigquery',
  });

  const bqDestination = new aiplatform.BigQueryDestination({
    outputUri: outputUri,
  });

  const outputConfig = new aiplatform.BatchPredictionJob.OutputConfig({
    bigqueryDestination: bqDestination,
    predictionsFormat: 'bigquery',
  });

  const batchPredictionJob = new aiplatform.BatchPredictionJob({
    displayName: 'Batch predict with Gemini - BigQuery',
    model: modelName, // Add model parameters per request in the input BigQuery table.
    inputConfig: inputConfig,
    outputConfig: outputConfig,
  });

  const request = {
    parent: parent,
    batchPredictionJob,
  };

  // Create batch prediction job request
  const [response] = await jobServiceClient.createBatchPredictionJob(request);
  console.log('Response name: ', response.name);
  // Example response:
  // Response name: projects/<project>/locations/us-central1/batchPredictionJobs/<job-id>
}

await create_batch_prediction_gemini_bq();

Java

Antes de testar esse exemplo, siga as instruções de configuração para Java no Guia de início rápido da Vertex AI sobre como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Vertex AI para Java.

Para autenticar na Vertex AI, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.

import com.google.cloud.aiplatform.v1.BatchPredictionJob;
import com.google.cloud.aiplatform.v1.BigQueryDestination;
import com.google.cloud.aiplatform.v1.BigQuerySource;
import com.google.cloud.aiplatform.v1.JobServiceClient;
import com.google.cloud.aiplatform.v1.JobServiceSettings;
import com.google.cloud.aiplatform.v1.LocationName;
import java.io.IOException;

public class CreateBatchPredictionGeminiBigqueryJobSample {

  public static void main(String[] args) throws IOException {
    // TODO(developer): Update these variables before running the sample.
    String project = "PROJECT_ID";
    String bigqueryDestinationOutputUri = "bq://PROJECT_ID.MY_DATASET.MY_TABLE";

    createBatchPredictionGeminiBigqueryJobSample(project, bigqueryDestinationOutputUri);
  }

  // Create a batch prediction job using BigQuery input and output datasets.
  public static BatchPredictionJob createBatchPredictionGeminiBigqueryJobSample(
      String project, String bigqueryDestinationOutputUri) throws IOException {
    String location = "us-central1";
    JobServiceSettings settings =
        JobServiceSettings.newBuilder()
            .setEndpoint(String.format("%s-aiplatform.googleapis.com:443", location))
            .build();

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests.
    try (JobServiceClient client = JobServiceClient.create(settings)) {
      BigQuerySource bigquerySource =
          BigQuerySource.newBuilder()
              .setInputUri("bq://storage-samples.generative_ai.batch_requests_for_multimodal_input")
              .build();
      BatchPredictionJob.InputConfig inputConfig =
          BatchPredictionJob.InputConfig.newBuilder()
              .setInstancesFormat("bigquery")
              .setBigquerySource(bigquerySource)
              .build();
      BigQueryDestination bigqueryDestination =
          BigQueryDestination.newBuilder().setOutputUri(bigqueryDestinationOutputUri).build();
      BatchPredictionJob.OutputConfig outputConfig =
          BatchPredictionJob.OutputConfig.newBuilder()
              .setPredictionsFormat("bigquery")
              .setBigqueryDestination(bigqueryDestination)
              .build();
      String modelName =
          String.format(
              "projects/%s/locations/%s/publishers/google/models/%s",
              project, location, "gemini-1.5-flash-002");

      BatchPredictionJob batchPredictionJob =
          BatchPredictionJob.newBuilder()
              .setDisplayName("my-display-name")
              .setModel(modelName) // Add model parameters per request in the input BigQuery table.
              .setInputConfig(inputConfig)
              .setOutputConfig(outputConfig)
              .build();

      LocationName parent = LocationName.of(project, location);
      BatchPredictionJob response = client.createBatchPredictionJob(parent, batchPredictionJob);
      System.out.format("\tName: %s\n", response.getName());
      // Example response:
      //   Name: projects/<project>/locations/us-central1/batchPredictionJobs/<job-id>
      return response;
    }
  }
}

Go

Antes de testar esse exemplo, siga as instruções de configuração para Go no Guia de início rápido da Vertex AI sobre como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Vertex AI para Go.

Para autenticar na Vertex AI, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.

import (
	"context"
	"fmt"
	"io"
	"time"

	aiplatform "cloud.google.com/go/aiplatform/apiv1"
	aiplatformpb "cloud.google.com/go/aiplatform/apiv1/aiplatformpb"

	"google.golang.org/api/option"
	"google.golang.org/protobuf/types/known/structpb"
)

// batchPredictBQ submits a batch prediction job using BigQuery data source as its input
func batchPredictBQ(w io.Writer, projectID, location string, inputURI string, outputURI string) error {
	// location  := "us-central1"
	// inputURI  := "bq://storage-samples.generative_ai.batch_requests_for_multimodal_input"
	// outputURI := "bq://<cloud-project-name>.<dataset-name>.<table-name>"
	modelName := "gemini-1.5-pro-002"
	jobName := "batch-predict-bq-test-001"

	ctx := context.Background()
	apiEndpoint := fmt.Sprintf("%s-aiplatform.googleapis.com:443", location)
	client, err := aiplatform.NewJobClient(ctx, option.WithEndpoint(apiEndpoint))
	if err != nil {
		return fmt.Errorf("unable to create aiplatform client: %w", err)
	}
	defer client.Close()

	modelParameters, err := structpb.NewValue(map[string]interface{}{
		"temperature":     0.2,
		"maxOutputTokens": 200,
	})
	if err != nil {
		return fmt.Errorf("unable to convert model parameters to protobuf value: %w", err)
	}

	req := &aiplatformpb.CreateBatchPredictionJobRequest{
		Parent: fmt.Sprintf("projects/%s/locations/%s", projectID, location),
		BatchPredictionJob: &aiplatformpb.BatchPredictionJob{
			DisplayName:     jobName,
			Model:           fmt.Sprintf("publishers/google/models/%s", modelName),
			ModelParameters: modelParameters,
			// Check the API reference for `BatchPredictionJob` for supported input and output formats:
			// https://cloud.google.com/vertex-ai/docs/reference/rpc/google.cloud.aiplatform.v1#google.cloud.aiplatform.v1.BatchPredictionJob
			InputConfig: &aiplatformpb.BatchPredictionJob_InputConfig{
				Source: &aiplatformpb.BatchPredictionJob_InputConfig_BigquerySource{
					BigquerySource: &aiplatformpb.BigQuerySource{
						InputUri: inputURI,
					},
				},
				InstancesFormat: "bigquery",
			},

			OutputConfig: &aiplatformpb.BatchPredictionJob_OutputConfig{
				Destination: &aiplatformpb.BatchPredictionJob_OutputConfig_BigqueryDestination{
					BigqueryDestination: &aiplatformpb.BigQueryDestination{
						OutputUri: outputURI,
					},
				},
				PredictionsFormat: "bigquery",
			},
		},
	}

	job, err := client.CreateBatchPredictionJob(ctx, req)
	if err != nil {
		return err
	}
	fullJobId := job.GetName()
	fmt.Fprintf(w, "submitted batch predict job for model %q\n", job.GetModel())
	fmt.Fprintf(w, "job id: %q\n", fullJobId)
	fmt.Fprintf(w, "job state: %s\n", job.GetState())
	// Example response:
	// submitted batch predict job for model "publishers/google/models/gemini-1.5-pro-002"
	// job id: "projects/.../locations/.../batchPredictionJobs/1234567890000000000"
	// job state: JOB_STATE_PENDING

	for {
		time.Sleep(5 * time.Second)

		job, err := client.GetBatchPredictionJob(ctx, &aiplatformpb.GetBatchPredictionJobRequest{
			Name: fullJobId,
		})
		if err != nil {
			return fmt.Errorf("error: couldn't get updated job state: %w", err)
		}

		if job.GetEndTime() != nil {
			fmt.Fprintf(w, "batch predict job finished with state %s\n", job.GetState())
			break
		} else {
			fmt.Fprintf(w, "batch predict job is running... job state is %s\n", job.GetState())
		}
	}

	return nil
}

Recuperar saída em lote

Quando uma tarefa de previsão em lote é concluída, a saída é armazenada na tabela do BigQuery especificada na solicitação.

Para linhas com sucesso, as respostas do modelo são armazenadas na coluna response. Caso contrário, os detalhes do erro são armazenados na coluna status para uma inspeção mais detalhada.

Exemplo de uma saída do BigQuery

solicitação resposta status
{"content":[{...}]}
{
  "candidates": [
    {
      "content": {
        "role": "model",
        "parts": [
          {
            "text": "In a medium bowl, whisk together the flour, baking soda, baking powder."
          }
        ]
      },
      "finishReason": "STOP",
      "safetyRatings": [
        {
          "category": "HARM_CATEGORY_SEXUALLY_EXPLICIT",
          "probability": "NEGLIGIBLE",
          "probabilityScore": 0.14057204,
          "severity": "HARM_SEVERITY_NEGLIGIBLE",
          "severityScore": 0.14270912
        }
      ]
    }
  ],
  "usageMetadata": {
    "promptTokenCount": 8,
    "candidatesTokenCount": 396,
    "totalTokenCount": 404
  }
}

A seguir