Anda harus membuat cache konteks sebelum dapat menggunakannya. Cache konteks yang Anda buat berisi data dalam jumlah besar yang dapat Anda gunakan dalam beberapa permintaan ke model Gemini. Konten yang di-cache disimpan di region tempat Anda membuat permintaan untuk membuat cache.
Konten dalam cache dapat berupa jenis MIME apa pun yang didukung oleh model multimodal Gemini. Misalnya, Anda dapat menyimpan teks, audio, atau video dalam jumlah besar ke dalam cache. Anda dapat menentukan lebih dari satu file untuk di-cache. Untuk informasi selengkapnya, lihat persyaratan media berikut:
Anda menentukan konten yang akan di-cache menggunakan blob, teks, atau jalur ke file yang disimpan di bucket Cloud Storage. Jika ukuran konten yang Anda simpan dalam cache lebih besar dari 10 MB, Anda harus menentukannya menggunakan URI file yang disimpan di bucket Cloud Storage.
Konten dalam cache memiliki masa aktif terbatas. Waktu habis masa berlaku default cache konteks
adalah 60 menit setelah dibuat. Jika menginginkan waktu habis masa berlaku yang berbeda,
Anda dapat menentukan waktu habis masa berlaku yang berbeda menggunakan properti ttl
atau expire_time
saat membuat cache konteks. Anda juga dapat memperbarui waktu habis masa berlaku untuk cache konteks yang belum habis masa berlakunya. Untuk informasi tentang cara menentukan ttl
dan expire_time
, lihat Memperbarui waktu habis masa berlaku.
Setelah masa berlakunya berakhir, cache konteks tidak lagi tersedia. Jika ingin mereferensikan konten dalam cache konteks yang sudah tidak berlaku dalam permintaan perintah mendatang, Anda harus membuat ulang cache konteks.
Batas cache konteks
Konten yang Anda simpan dalam cache harus mematuhi batas berikut:
Batas penyimpanan dalam cache konteks | |
---|---|
Ukuran minimum cache |
32.769 token |
Ukuran maksimum konten yang dapat Anda simpan dalam cache menggunakan blob atau teks |
10 MB |
Waktu minimum sebelum cache berakhir masa berlakunya setelah dibuat |
1 menit |
Waktu maksimum sebelum cache berakhir masa berlakunya setelah dibuat |
Tidak ada durasi cache maksimum |
Membuat contoh cache konteks
Contoh berikut menunjukkan cara membuat cache konteks.
Python
Untuk mempelajari cara menginstal atau mengupdate Vertex AI SDK untuk Python, lihat Menginstal Vertex AI SDK untuk Python. Untuk mengetahui informasi selengkapnya, lihat dokumentasi referensi API Vertex AI SDK untuk Python.
Respons streaming dan non-streaming
Anda dapat memilih apakah model menghasilkan respons streaming atau respons non-streaming. Untuk respons streaming, Anda akan menerima setiap respons segera setelah token output-nya dibuat. Untuk respons non-streaming, Anda akan menerima semua respons setelah semua token output dibuat.
Untuk respons streaming, gunakan parameter stream
di
generate_content
.
response = model.generate_content(contents=[...], stream = True)
Untuk respons non-streaming, hapus parameter, atau tetapkan parameter ke
False
.
Kode contoh
Go
Sebelum mencoba contoh ini, ikuti petunjuk penyiapan Go di panduan memulai Vertex AI. Untuk mengetahui informasi selengkapnya, lihat dokumentasi referensi Vertex AI Go SDK untuk Gemini.
Untuk melakukan autentikasi ke Vertex AI, siapkan Kredensial Default Aplikasi. Untuk informasi selengkapnya, lihat Menyiapkan ADC untuk lingkungan pengembangan lokal.
Respons streaming dan non-streaming
Anda dapat memilih apakah model menghasilkan respons streaming atau respons non-streaming. Untuk respons streaming, Anda akan menerima setiap respons segera setelah token output-nya dibuat. Untuk respons non-streaming, Anda akan menerima semua respons setelah semua token output dibuat.
Untuk respons streaming, gunakan metode
GenerateContentStream
.
iter := model.GenerateContentStream(ctx, genai.Text("Tell me a story about a lumberjack and his giant ox. Keep it very short."))
Untuk respons non-streaming, gunakan metode GenerateContent
.
resp, err := model.GenerateContent(ctx, genai.Text("What is the average size of a swallow?"))
Kode contoh
REST
Anda dapat menggunakan REST untuk membuat cache konteks menggunakan Vertex AI API untuk mengirim permintaan POST ke endpoint model penayang. Contoh berikut menunjukkan cara membuat cache konteks menggunakan file yang disimpan di bucket Cloud Storage.
Sebelum menggunakan salah satu data permintaan, lakukan penggantian berikut:
- PROJECT_ID: Project ID Anda.
- LOCATION: Region untuk memproses permintaan dan tempat konten yang di-cache disimpan. Untuk mengetahui daftar region yang didukung, lihat Region yang tersedia.
- CACHE_DISPLAY_NAME: Nama tampilan yang bermakna untuk mendeskripsikan dan membantu Anda mengidentifikasi setiap cache konteks.
- MIME_TYPE: Jenis MIME konten yang akan di-cache.
- CONTENT_TO_CACHE_URI: URI Cloud Storage konten yang akan di-cache.
Metode HTTP dan URL:
POST https://LOCATION-aiplatform.googleapis.com/v1beta1/projects/PROJECT_ID/locations/LOCATION/cachedContents
Isi JSON permintaan:
{ "model": "projects/PROJECT_ID/locations/LOCATION/publishers/google/models/gemini-1.5-pro-002", "displayName": "CACHE_DISPLAY_NAME", "contents": [{ "role": "user", "parts": [{ "fileData": { "mimeType": "MIME_TYPE", "fileUri": "CONTENT_TO_CACHE_URI" } }] }, { "role": "model", "parts": [{ "text": "This is sample text to demonstrate explicit caching." }] }] }
Untuk mengirim permintaan Anda, pilih salah satu opsi berikut:
curl
Simpan isi permintaan dalam file bernama request.json
,
dan jalankan perintah berikut:
curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION-aiplatform.googleapis.com/v1beta1/projects/PROJECT_ID/locations/LOCATION/cachedContents"
PowerShell
Simpan isi permintaan dalam file bernama request.json
,
dan jalankan perintah berikut:
$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }
Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION-aiplatform.googleapis.com/v1beta1/projects/PROJECT_ID/locations/LOCATION/cachedContents" | Select-Object -Expand Content
Anda akan menerima respons JSON yang mirip dengan yang berikut ini:
Contoh perintah curl
LOCATION="us-central1"
MODEL_ID="gemini-1.5-pro-002"
PROJECT_ID="test-project"
MIME_TYPE="video/mp4"
CACHED_CONTENT_URI="gs://path-to-bucket/video-file-name.mp4"
curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json" \
https://${LOCATION}-aiplatform.googleapis.com/v1beta1/projects/${PROJECT_ID}/locations/${LOCATION}/publishers/google/models/${MODEL_ID}/cachedContents -d \
'{
"model":"projects/${PROJECT_ID}/locations/${LOCATION}/publishers/google/models/${MODEL_ID}",
"contents": [
{
"role": "user",
"parts": [
{
"fileData": {
"mimeType": "${MIME_TYPE}",
"fileUri": "${CACHED_CONTENT_URI}"
}
}
]
}
]
}'
Langkah selanjutnya
- Pelajari cara menggunakan cache konteks.
- Pelajari cara memperbarui waktu habis masa berlaku cache konteks.