Testare i prompt per la generazione di codice

Per progettare un prompt efficace, prova diverse versioni e sperimenta i parametri per determinare quale genera la risposta ottimale. Puoi testare i prompt in modo programmatico con API Codey e nella console Google Cloud con Vertex AI Studio.

Testare i prompt per la generazione di codice

Per testare le richieste di generazione di codice, scegli uno dei seguenti metodi.

REST

Per testare un prompt di generazione di codice con l'API Vertex AI, invia una richiesta POST all'endpoint del modello del publisher.

Prima di utilizzare i dati della richiesta, effettua le seguenti sostituzioni:

  • PROJECT_ID: il tuo ID progetto.
  • PREFIX: Per i modelli di codice, prefix rappresenta l'inizio di una porzione di un codice di programmazione significativo o un prompt in linguaggio naturale che descrive il codice essere generati.
  • TEMPERATURE: La temperatura viene utilizzata per il campionamento durante la generazione della risposta. La temperatura controlla il grado di randomicità nella selezione dei token. Le temperature più basse sono ideali per prompt che richiedono una temperatura una risposta aperta o creativa, mentre le temperature più alte possono portare a una maggiore diversificazione o creatività che consentono di analizzare i dati e visualizzare i risultati. Una temperatura pari a 0 indica che vengono sempre selezionati i token con la probabilità più alta. In questo caso, le risposte per un determinato prompt sono per lo più deterministiche, ma è ancora possibile una piccola variazione.
  • MAX_OUTPUT_TOKENS: numero massimo di token che possono essere generati nella risposta. Un token equivale a circa quattro caratteri. 100 token corrispondono a circa 60-80 parole.

    Specifica un valore più basso per risposte più brevi e un valore più alto per risposte potenzialmente più lunghe diverse.

  • CANDIDATE_COUNT: Il numero di varianti della risposta da restituire. Per ogni richiesta, ti vengono addebitati i token di output di tutti i candidati, ma solo una volta per i token di input.

    L'indicazione di più candidati è una funzionalità in anteprima compatibile con generateContent (streamGenerateContent non è supportato). Sono supportati i seguenti modelli:

    • Gemini 1.5 Flash: 1-8, valore predefinito: 1
    • Gemini 1.5 Pro: 1-8, valore predefinito: 1
    • Gemini 1.0 Pro: 1-8, valore predefinito: 1
    La di valori validi è un int compreso tra 1 e 4.

Metodo HTTP e URL:

POST https://us-central1-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/us-central1/publishers/google/models/code-bison:predict

Corpo JSON della richiesta:

{
  "instances": [
    { "prefix": "PREFIX" }
  ],
  "parameters": {
    "temperature": TEMPERATURE,
    "maxOutputTokens": MAX_OUTPUT_TOKENS,
    "candidateCount": CANDIDATE_COUNT
  }
}

Per inviare la richiesta, scegli una delle seguenti opzioni:

curl

Salva il corpo della richiesta in un file denominato request.json, quindi esegui il comando seguente:

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://us-central1-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/us-central1/publishers/google/models/code-bison:predict"

PowerShell

Salva il corpo della richiesta in un file denominato request.json, quindi esegui il comando seguente:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://us-central1-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/us-central1/publishers/google/models/code-bison:predict" | Select-Object -Expand Content

Dovresti ricevere una risposta JSON simile alla seguente.

Python

Per scoprire come installare o aggiornare l'SDK Vertex AI per Python, vedi Installare l'SDK Vertex AI per Python. Per ulteriori informazioni, consulta documentazione di riferimento dell'API Python.

from vertexai.language_models import CodeGenerationModel

parameters = {
    "temperature": 0.1,  # Temperature controls the degree of randomness in token selection.
    "max_output_tokens": 256,  # Token limit determines the maximum amount of text output.
}

code_generation_model = CodeGenerationModel.from_pretrained("code-bison@001")
response = code_generation_model.predict(
    prefix="Write a function that checks if a year is a leap year.", **parameters
)

print(f"Response from Model: {response.text}")

return response

Node.js

Prima di provare questo esempio, segui le istruzioni di configurazione Node.js riportate nella guida rapida all'utilizzo delle librerie client di Vertex AI. Per ulteriori informazioni, consulta la documentazione di riferimento dell'API Node.js di Vertex AI.

Per eseguire l'autenticazione su Vertex AI, configura Credenziali predefinite dell'applicazione. Per maggiori informazioni, consulta Configurare l'autenticazione per un ambiente di sviluppo locale.

/**
 * TODO(developer): Uncomment these variables before running the sample.\
 * (Not necessary if passing values as arguments)
 */
// const project = 'YOUR_PROJECT_ID';
// const location = 'YOUR_PROJECT_LOCATION';
const aiplatform = require('@google-cloud/aiplatform');

// Imports the Google Cloud Prediction service client
const {PredictionServiceClient} = aiplatform.v1;

// Import the helper module for converting arbitrary protobuf.Value objects.
const {helpers} = aiplatform;

// Specifies the location of the api endpoint
const clientOptions = {
  apiEndpoint: 'us-central1-aiplatform.googleapis.com',
};
const publisher = 'google';
const model = 'code-bison@001';

// Instantiates a client
const predictionServiceClient = new PredictionServiceClient(clientOptions);

async function callPredict() {
  // Configure the parent resource
  const endpoint = `projects/${project}/locations/${location}/publishers/${publisher}/models/${model}`;

  const prompt = {
    prefix: 'Write a function that checks if a year is a leap year.',
  };
  const instanceValue = helpers.toValue(prompt);
  const instances = [instanceValue];

  const parameter = {
    temperature: 0.5,
    maxOutputTokens: 256,
  };
  const parameters = helpers.toValue(parameter);

  const request = {
    endpoint,
    instances,
    parameters,
  };

  // Predict request
  const [response] = await predictionServiceClient.predict(request);
  console.log('Get code generation response');
  const predictions = response.predictions;
  console.log('\tPredictions :');
  for (const prediction of predictions) {
    console.log(`\t\tPrediction : ${JSON.stringify(prediction)}`);
  }
}

callPredict();

Java

Prima di provare questo esempio, segui le istruzioni di configurazione Java riportate nella guida rapida all'utilizzo delle librerie client di Vertex AI. Per ulteriori informazioni, consulta API Java Vertex AI documentazione di riferimento.

Per eseguire l'autenticazione su Vertex AI, configura Credenziali predefinite dell'applicazione. Per ulteriori informazioni, vedi Configura l'autenticazione per un ambiente di sviluppo locale.


import com.google.cloud.aiplatform.v1.EndpointName;
import com.google.cloud.aiplatform.v1.PredictResponse;
import com.google.cloud.aiplatform.v1.PredictionServiceClient;
import com.google.cloud.aiplatform.v1.PredictionServiceSettings;
import com.google.protobuf.InvalidProtocolBufferException;
import com.google.protobuf.Value;
import com.google.protobuf.util.JsonFormat;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;

public class PredictCodeGenerationFunctionSample {

  public static void main(String[] args) throws IOException {
    // TODO(developer): Replace this variable before running the sample.
    String project = "YOUR_PROJECT_ID";

    // Learn how to create prompts to work with a code model to generate code:
    // https://cloud.google.com/vertex-ai/docs/generative-ai/code/code-generation-prompts
    String instance = "{ \"prefix\": \"Write a function that checks if a year is a leap year.\"}";
    String parameters = "{\n" + "  \"temperature\": 0.5,\n" + "  \"maxOutputTokens\": 256,\n" + "}";
    String location = "us-central1";
    String publisher = "google";
    String model = "code-bison@001";

    predictFunction(instance, parameters, project, location, publisher, model);
  }

  // Use Codey for Code Generation to generate a code function
  public static void predictFunction(
      String instance,
      String parameters,
      String project,
      String location,
      String publisher,
      String model)
      throws IOException {
    final String endpoint = String.format("%s-aiplatform.googleapis.com:443", location);
    PredictionServiceSettings predictionServiceSettings =
        PredictionServiceSettings.newBuilder().setEndpoint(endpoint).build();

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests.
    try (PredictionServiceClient predictionServiceClient =
        PredictionServiceClient.create(predictionServiceSettings)) {
      final EndpointName endpointName =
          EndpointName.ofProjectLocationPublisherModelName(project, location, publisher, model);

      Value instanceValue = stringToValue(instance);
      List<Value> instances = new ArrayList<>();
      instances.add(instanceValue);

      Value parameterValue = stringToValue(parameters);

      PredictResponse predictResponse =
          predictionServiceClient.predict(endpointName, instances, parameterValue);
      System.out.println("Predict Response");
      System.out.println(predictResponse);
    }
  }

  // Convert a Json string to a protobuf.Value
  static Value stringToValue(String value) throws InvalidProtocolBufferException {
    Value.Builder builder = Value.newBuilder();
    JsonFormat.parser().merge(value, builder);
    return builder.build();
  }
}

Console

Per testare un prompt di generazione di codice utilizzando Vertex AI Studio nella Console Google Cloud, segui questi passaggi:

  1. Nella sezione Vertex AI della console Google Cloud, vai a Vertex AI Studio

    Vai a Vertex AI Studio

  2. Fai clic su Inizia.
  3. Fai clic su Crea prompt.
  4. In Modello, seleziona il modello con il nome che inizia con code-bison. Un numero di tre cifre dopo code-bison indica il numero di versione del modello. Ad esempio, code-bison@002 è il nome della versione uno del modello di generazione del codice.
  5. In Prompt, inserisci un prompt di generazione del codice.
  6. Modifica Temperatura e Limite di token per sperimentare il loro impatto sulla risposta. Per ulteriori informazioni, consulta Modello di generazione del codice parametri.
  7. Fai clic su Invia per generare una risposta.
  8. Fai clic su Salva se vuoi salvare un prompt
  9. Fai clic su Visualizza codice per visualizzare il codice Python o un comando curl per il prompt.

Comando curl di esempio

MODEL_ID="code-bison"
PROJECT_ID=PROJECT_ID

curl \
-X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json" \
https://us-central1-aiplatform.googleapis.com/v1/projects/${PROJECT_ID}/locations/us-central1/publishers/google/models/${MODEL_ID}:predict -d \
$"{
  'instances': [
    { 'prefix': 'Write a function that checks if a year is a leap year.' }
  ],
  'parameters': {
    'temperature': 0.2,
    'maxOutputTokens': 1024,
    'candidateCount': 1
  }
}"

Per scoprire di più sulla progettazione dei prompt per la generazione di codice, consulta Creare prompt per la generazione di codice.

Trasmetti la risposta dal modello di codice

Per visualizzare richieste e risposte di codice di esempio che utilizzano l'API REST, consulta Esempi di utilizzo dell'API REST in streaming.

Per visualizzare richieste e risposte di codice di esempio che utilizzano l'SDK Vertex AI per Python, consulta Esempi di utilizzo dell'SDK Vertex AI per Python per lo streaming.

Passaggi successivi