Mit Vertex AI können Sie Vertex AI Studio verwenden, um Prompts in der Google Cloud Console, der Vertex AI API und dem Vertex AI SDK für Python zu testen. Auf dieser Seite erfahren Sie, wie Sie Chataufforderungen über eine dieser Schnittstellen testen.
Weitere Informationen zum Entwerfen von Chat-Prompts finden Sie unter Chat-Prompts.
Chat-Prompts testen
Wählen Sie eine der folgenden Methoden, um Chataufforderungen zu testen.
REST
Senden Sie zum Testen eines Text-Prompts mit der Vertex AI API eine POST-Anfrage an den Endpunkt des Publisher-Modells.
Ersetzen Sie diese Werte in den folgenden Anfragedaten:
- PROJECT_ID: Ihre Projekt-ID.
- CONTEXT: Optional. Ein Kontext kann eine Anleitung sein, die Sie dem Modell zur Reaktionsgestaltung zur Verfügung stellen, oder Informationen, die verwendet werden, um eine Antwort zu erzeugen. Fügen Sie in der Eingabeaufforderung Kontextinformationen hinzu, wenn Sie dem Modell Informationen hinzufügen oder die Grenzen der Antworten auf den Inhalt beschränken müssen.
- Optionale Beispiele: Beispiele für eine Liste strukturierter Nachrichten an das Modell, um zu erfahren, wie Sie auf die Unterhaltung antworten.
- EXAMPLE_INPUT: Beispiel einer Nachricht.
- EXAMPLE_OUTPUT: Beispiel für die ideale Antwort.
- Nachrichten: Unterhaltungsverlauf, der dem Modell in einem strukturierten alternate-author-Format bereitgestellt wird. Nachrichten werden in chronologischer Reihenfolge angezeigt: älteste zuerst, neueste zuletzt. Führt der Verlauf der Nachrichten dazu, dass die Eingabe die maximale Länge überschreitet, werden die ältesten Nachrichten entfernt, bis der Prompt innerhalb des zulässigen Limits liegt. Es muss eine ungerade Anzahl an Nachrichten (AUTHOR-CONTENT-Paaren) vorhanden sein, damit das Modell eine Antwort generiert.
- AUTHOR: Der Autor der Nachricht.
- CONTENT: Der Inhalt der Nachricht.
- TEMPERATURE:
Die Temperatur wird für die Probenahme während der Antwortgenerierung verwendet. Dies passiert, wenn
topP
undtopK
angewendet werden. Die Temperatur bestimmt den Grad der Zufälligkeit bei der Tokenauswahl. Niedrigere Temperaturen eignen sich gut für Prompts, die eine weniger offene oder kreative Antwort erfordern, während höhere Temperaturen zu vielfältigeren oder kreativeren Ergebnissen führen können. Eine Temperatur von0
bedeutet, dass immer die Tokens mit der höchsten Wahrscheinlichkeit ausgewählt werden. In diesem Fall sind die Antworten auf einen bestimmten Prompt größtenteils deterministisch, aber eine gewisse Variation ist dennoch möglich.Wenn das Modell eine zu allgemeine oder zu kurze Antwort zurückgibt, oder wenn das Modell eine Fallback-Antwort ausgibt, versuchen Sie, die Temperatur zu erhöhen.
- MAX_OUTPUT_TOKENS: Maximale Anzahl an Tokens, die in der Antwort generiert werden können. Ein Token besteht aus etwa vier Zeichen. 100 Tokens entsprechen etwa 60–80 Wörtern.
Geben Sie kürzere Werte für kürzere Antworten und höhere Werte für längere Antworten an.
- TOP_P:
Der Wert „Top-P“ ändert, wie das Modell Tokens für die Ausgabe auswählt. Die Tokens werden von den wahrscheinlichsten (siehe „Top-K“) bis zu den unwahrscheinlichsten Werten ausgewählt, bis die Summe ihrer Wahrscheinlichkeiten dem „Top-P“-Wert entspricht. Beispiel: Wenn die Tokens A, B und C eine Wahrscheinlichkeit von 0,3, 0,2 und 0,1 haben und der „Top-P“-Wert
0.5
ist, wählt das Modell anhand der Temperatur entweder A oder B als das nächste Token und C als Kandidaten ausschließen.Geben Sie einen niedrigeren Wert für weniger zufällige Antworten und einen höheren Wert für zufälligere Antworten an.
- TOP_K:
Der Wert „Top-K“ ändert, wie das Modell Tokens für die Ausgabe auswählt. Ein „Top-K“ von
1
bedeutet, dass das nächste ausgewählte Token unter den Tokens im Modell-Vokabular (auch als gierige Decodierung bezeichnet) am wahrscheinlichsten ist, während ein „Top-K“ von3
bedeutet, dass das nächste Token mithilfe der Temperatur aus den drei wahrscheinlichsten Tokens ausgewählt wird.Für jeden Tokenauswahlschritt werden die „Top-K“-Tokens mit den höchsten Wahrscheinlichkeiten abgetastet. Anschließend werden Tokens weiter auf der Grundlage von „Top-P“ gefiltert, wobei das endgültige Token mithilfe von Temperaturproben ausgewählt wird.
Geben Sie einen niedrigeren Wert für weniger zufällige Antworten und einen höheren Wert für zufälligere Antworten an.
HTTP-Methode und URL:
POST https://us-central1-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/us-central1/publishers/google/models/chat-bison:predict
JSON-Text der Anfrage:
{ "instances": [{ "context": "CONTEXT", "examples": [ { "input": {"content": "EXAMPLE_INPUT"}, "output": {"content": "EXAMPLE_OUTPUT"} }], "messages": [ { "author": "AUTHOR", "content": "CONTENT", }], }], "parameters": { "temperature": TEMPERATURE, "maxOutputTokens": MAX_OUTPUT_TOKENS, "topP": TOP_P, "topK": TOP_K } }
Wenn Sie die Anfrage senden möchten, wählen Sie eine der folgenden Optionen aus:
curl
Speichern Sie den Anfragetext in einer Datei mit dem Namen request.json
und führen Sie den folgenden Befehl aus:
curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://us-central1-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/us-central1/publishers/google/models/chat-bison:predict"
PowerShell
Speichern Sie den Anfragetext in einer Datei mit dem Namen request.json
und führen Sie den folgenden Befehl aus:
$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }
Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://us-central1-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/us-central1/publishers/google/models/chat-bison:predict" | Select-Object -Expand Content
Sie sollten eine JSON-Antwort ähnlich wie diese erhalten:
Beispiel: cURL-Befehls
MODEL_ID="chat-bison"
PROJECT_ID=PROJECT_ID
curl \
-X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json" \
https://us-central1-aiplatform.googleapis.com/v1/projects/${PROJECT_ID}/locations/us-central1/publishers/google/models/${MODEL_ID}:predict -d \
'{
"instances": [{
"context": "My name is Ned. You are my personal assistant. My favorite movies are Lord of the Rings and Hobbit.",
"examples": [ {
"input": {"content": "Who do you work for?"},
"output": {"content": "I work for Ned."}
},
{
"input": {"content": "What do I like?"},
"output": {"content": "Ned likes watching movies."}
}],
"messages": [
{
"author": "user",
"content": "Are my favorite movies based on a book series?",
},
{
"author": "bot",
"content": "Yes, your favorite movies, The Lord of the Rings and The Hobbit, are based on book series by J.R.R. Tolkien.",
},
{
"author": "user",
"content": "When were these books published?",
}],
}],
"parameters": {
"temperature": 0.3,
"maxOutputTokens": 200,
"topP": 0.8,
"topK": 40
}
}'
Python
Informationen zur Installation des Vertex AI SDK for Python finden Sie unter Vertex AI SDK for Python installieren. Weitere Informationen finden Sie in der Referenzdokumentation zur Python API.
Node.js
Bevor Sie dieses Beispiel anwenden, folgen Sie den Node.js-Einrichtungsschritten in der Vertex AI-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Informationen finden Sie in der Referenzdokumentation zur Vertex AI Node.js API.
Richten Sie zur Authentifizierung bei Vertex AI Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.
Java
Bevor Sie dieses Beispiel anwenden, folgen Sie den Java-Einrichtungsschritten in der Vertex AI-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Informationen finden Sie in der Referenzdokumentation zur Vertex AI Java API.
Richten Sie zur Authentifizierung bei Vertex AI Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.
C#
Bevor Sie dieses Beispiel anwenden, folgen Sie den C#-Einrichtungsschritten in der Vertex AI-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Informationen finden Sie in der Referenzdokumentation zur Vertex AI C# API.
Richten Sie zur Authentifizierung bei Vertex AI Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.
Console
So testen Sie über Vertex AI Studio einen Chat-Prompt in der Google Cloud Console:
- Rufen Sie im Bereich „Vertex AI“ der Google Cloud Console die Seite Vertex AI Studio auf.
- Klicken Sie auf den Tab Jetzt starten.
- Klicken Sie auf Textchat.
Konfigurieren Sie die Eingabeaufforderung so:
- Kontext: Geben Sie eine Anleitung für die Aufgabe ein, die das Modell ausführen soll, und fügen Sie Kontextinformationen als Referenzmaterial für das Modell hinzu.
- Beispiele: Fügen Sie für kurzzeitige Aufforderungen Beispiele für Eingabeausgaben hinzu, die die Verhaltensmuster des Modells imitieren.
Konfigurieren Sie Modell und Parameter:
- Modell: Wählen Sie das Modell, das Sie verwenden möchten.
Temperaturen: Geben Sie über den Schieberegler oder das Textfeld einen Temperaturwert ein.
Die Temperatur wird für die Probenahme während der Antwortgenerierung verwendet. Dies passiert, wenntopP
undtopK
angewendet werden. Die Temperatur bestimmt den Grad der Zufälligkeit bei der Tokenauswahl. Niedrigere Temperaturen eignen sich gut für Prompts, die eine weniger offene oder kreative Antwort erfordern, während höhere Temperaturen zu vielfältigeren oder kreativeren Ergebnissen führen können. Eine Temperatur von0
bedeutet, dass immer die Tokens mit der höchsten Wahrscheinlichkeit ausgewählt werden. In diesem Fall sind die Antworten auf einen bestimmten Prompt größtenteils deterministisch, aber eine gewisse Variation ist dennoch möglich.Wenn das Modell eine zu allgemeine oder zu kurze Antwort zurückgibt, oder wenn das Modell eine Fallback-Antwort ausgibt, versuchen Sie, die Temperatur zu erhöhen.
Token-Limit: Verwenden Sie den Schieberegler oder das Textfeld, um einen Wert für das maximale Ausgabelimit einzugeben.
Maximale Anzahl an Tokens, die in der Antwort generiert werden können. Ein Token besteht aus etwa vier Zeichen. 100 Tokens entsprechen etwa 60–80 Wörtern.Geben Sie kürzere Werte für kürzere Antworten und höhere Werte für längere Antworten an.
Top-K: Sie können den Schieberegler oder das Textfeld verwenden, um einen Wert für Top-K einzugeben.
Der Wert „Top-K“ ändert, wie das Modell Tokens für die Ausgabe auswählt. Ein „Top-K“ von1
bedeutet, dass das nächste ausgewählte Token unter den Tokens im Modell-Vokabular (auch als gierige Decodierung bezeichnet) am wahrscheinlichsten ist, während ein „Top-K“ von3
bedeutet, dass das nächste Token mithilfe der Temperatur aus den drei wahrscheinlichsten Tokens ausgewählt wird.Für jeden Tokenauswahlschritt werden die „Top-K“-Tokens mit den höchsten Wahrscheinlichkeiten abgetastet. Anschließend werden Tokens weiter auf der Grundlage von „Top-P“ gefiltert, wobei das endgültige Token mithilfe von Temperaturproben ausgewählt wird.
Geben Sie einen niedrigeren Wert für weniger zufällige Antworten und einen höheren Wert für zufälligere Antworten an.
- Top-P: Verwenden Sie den Schieberegler oder das Textfeld, um einen Wert für „Top-P“ einzugeben.
Tokens werden vom wahrscheinlichsten bis zum am wenigsten wahrscheinlichen Token ausgewählt, bis die Summe ihrer Wahrscheinlichkeiten dem Wert von „Top-P“ entspricht. Für die Ergebnisse der geringsten Variablen legen Sie Top-P auf
0
fest.
- Geben Sie eine Nachricht in das Nachrichtenfeld ein, um eine Unterhaltung mit dem Chatbot zu starten. Der Chatbot verwendet die vorherigen Nachrichten als Kontext für neue Antworten.
- Optional: Klicken Sie auf Speichern, um den Prompt unter Meine Prompts zu speichern.
- Optional: Klicken Sie auf Code anzeigen, um den Python-Code oder einen curl-Befehl für den Prompt abzurufen.
- Optional: Wenn Sie alle vorherigen Nachrichten löschen möchten, klicken Sie auf Unterhaltung löschen.
Streamantwort aus dem Chatmodell
Beispiele für die Verwendung von REST API-Beispielanfragen und -Antworten finden Sie unter Beispiele, die die REST-API verwenden.
Um Beispielcodeanfragen und -antworten mit dem Vertex AI SDK für Python anzuzeigen, lesen Sie Beispiele, die Vertex AI SDK für Python verwenden.
Nächste Schritte
- Foundation Model optimieren
- Verantwortungsbewusste Best Practices für KI und die Sicherheitsfilter von Vertex AI