動画オブジェクト トラッキング モデルから予測を取得する

このページでは、Google Cloud コンソールまたは Vertex AI API を使用して、動画オブジェクト トラッキング モデルからバッチ予測を取得する方法について説明します。バッチ予測は非同期リクエストです。エンドポイントにモデルをデプロイすることなく、モデルリソースからバッチ予測を直接リクエストします。

AutoML 動画モデルはオンライン予測をサポートしていません。

バッチ予測を取得する

バッチ予測リクエストでは、入力ソースと、Vertex AI が予測結果を格納する出力先を指定します。

入力データの要件

一括リクエストの入力では、予測用のモデルに送信するアイテムを指定します。AutoML 動画モデルタイプのバッチ予測では、JSON Lines ファイルを使用して予測を行う動画のリストを指定し、JSON Lines ファイルを Cloud Storage バケットに保存します。timeSegmentEnd フィールドに Infinity を指定すると、動画の終了を指定できます。次のサンプルは、入力 JSON Lines ファイルの 1 行を示しています。

{'content': 'gs://sourcebucket/datasets/videos/source_video.mp4', 'mimeType': 'video/mp4', 'timeSegmentStart': '0.0s', 'timeSegmentEnd': '2.366667s'}

バッチ予測をリクエストする

バッチ予測リクエストの場合、Google Cloud Console または Vertex AI API を使用できます。送信した入力アイテム数によっては、バッチ予測タスクが完了するまでに時間がかかることがあります。

Google Cloud コンソール

Google Cloud コンソールを使用してバッチ予測をリクエストします。

  1. Google Cloud コンソールの [Vertex AI] セクションで、[バッチ予測] ページに移動します。

    [バッチ予測] ページに移動

  2. [作成] をクリックして [新しいバッチ予測] ウィンドウを開き、次の操作を行います。

    1. バッチ予測の名前を入力します。
    2. [モデル名] で、このバッチ予測に使用するモデルの名前を選択します。
    3. [転送元のパス] に、JSON Lines 入力ファイルがある Cloud Storage のロケーションを指定します。
    4. [宛先のパス] に、バッチ予測結果が保存される Cloud Storage のロケーションを指定します。出力形式はモデルの目標によって決まります。画像目的の AutoML モデルは、JSON Lines ファイルを出力します。

API

Vertex AI API を使用してバッチ予測リクエストを送信します。

REST

リクエストのデータを使用する前に、次のように置き換えます。

  • LOCATION_ID: モデルを保存し、バッチ予測ジョブを実行するリージョン。例: us-central1
  • PROJECT_ID: 実際のプロジェクト ID
  • BATCH_JOB_NAME: バッチジョブの表示名
  • MODEL_ID: 予測に使用するモデルの ID
  • THRESHOLD_VALUE(省略可): Vertex AI は、この値以上の信頼スコアを持つ予測のみを返します。デフォルトは 0.0 です。
  • URI: 入力 JSON Lines ファイルが存在する Cloud Storage URI。
  • BUCKET: Cloud Storage バケット
  • PROJECT_NUMBER: プロジェクトに自動生成されたプロジェクト番号

HTTP メソッドと URL:

POST https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/batchPredictionJobs

リクエストの本文(JSON):

{
    "displayName": "BATCH_JOB_NAME",
    "model": "projects/PROJECT_ID/locations/LOCATION_ID/models/MODEL_ID",
    "modelParameters": {
      "confidenceThreshold": THRESHOLD_VALUE,
    },
    "inputConfig": {
        "instancesFormat": "jsonl",
        "gcsSource": {
            "uris": ["URI"],
        },
    },
    "outputConfig": {
        "predictionsFormat": "jsonl",
        "gcsDestination": {
            "outputUriPrefix": "OUTPUT_BUCKET",
        },
    },
}

リクエストを送信するには、次のいずれかのオプションを選択します。

curl

リクエスト本文を request.json という名前のファイルに保存して、次のコマンドを実行します。

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/batchPredictionJobs"

PowerShell

リクエスト本文を request.json という名前のファイルに保存して、次のコマンドを実行します。

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/batchPredictionJobs" | Select-Object -Expand Content

次のような JSON レスポンスが返されます。

{
  "name": "projects/PROJECT_NUMBER/locations/us-central1/batchPredictionJobs/BATCH_JOB_ID",
  "displayName": "BATCH_JOB_NAME",
  "model": "projects/PROJECT_NUMBER/locations/us-central1/models/MODEL_ID",
  "inputConfig": {
    "instancesFormat": "jsonl",
    "gcsSource": {
      "uris": [
        "CONTENT"
      ]
    }
  },
  "outputConfig": {
    "predictionsFormat": "jsonl",
    "gcsDestination": {
      "outputUriPrefix": "BUCKET"
    }
  },
  "state": "JOB_STATE_PENDING",
  "createTime": "2020-05-30T02:58:44.341643Z",
  "updateTime": "2020-05-30T02:58:44.341643Z",
  "modelDisplayName": "MODEL_NAME",
  "modelObjective": "MODEL_OBJECTIVE"
}

ジョブ stateJOB_STATE_SUCCEEDED になるまで、BATCH_JOB_ID を使用してバッチジョブのステータスをポーリングできます。

Java

このサンプルを試す前に、Vertex AI クイックスタート: クライアント ライブラリの使用にある Java の設定手順を完了してください。詳細については、Vertex AI Java API のリファレンス ドキュメントをご覧ください。

Vertex AI に対する認証を行うには、アプリケーションのデフォルト認証情報を設定します。詳細については、ローカル開発環境の認証を設定するをご覧ください。


import com.google.cloud.aiplatform.util.ValueConverter;
import com.google.cloud.aiplatform.v1.BatchDedicatedResources;
import com.google.cloud.aiplatform.v1.BatchPredictionJob;
import com.google.cloud.aiplatform.v1.BatchPredictionJob.InputConfig;
import com.google.cloud.aiplatform.v1.BatchPredictionJob.OutputConfig;
import com.google.cloud.aiplatform.v1.BatchPredictionJob.OutputInfo;
import com.google.cloud.aiplatform.v1.BigQueryDestination;
import com.google.cloud.aiplatform.v1.BigQuerySource;
import com.google.cloud.aiplatform.v1.CompletionStats;
import com.google.cloud.aiplatform.v1.GcsDestination;
import com.google.cloud.aiplatform.v1.GcsSource;
import com.google.cloud.aiplatform.v1.JobServiceClient;
import com.google.cloud.aiplatform.v1.JobServiceSettings;
import com.google.cloud.aiplatform.v1.LocationName;
import com.google.cloud.aiplatform.v1.MachineSpec;
import com.google.cloud.aiplatform.v1.ManualBatchTuningParameters;
import com.google.cloud.aiplatform.v1.ModelName;
import com.google.cloud.aiplatform.v1.ResourcesConsumed;
import com.google.cloud.aiplatform.v1.schema.predict.params.VideoObjectTrackingPredictionParams;
import com.google.protobuf.Any;
import com.google.protobuf.Value;
import com.google.rpc.Status;
import java.io.IOException;
import java.util.List;

public class CreateBatchPredictionJobVideoObjectTrackingSample {

  public static void main(String[] args) throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String batchPredictionDisplayName = "YOUR_VIDEO_OBJECT_TRACKING_DISPLAY_NAME";
    String modelId = "YOUR_MODEL_ID";
    String gcsSourceUri =
        "gs://YOUR_GCS_SOURCE_BUCKET/path_to_your_video_source/[file.csv/file.jsonl]";
    String gcsDestinationOutputUriPrefix =
        "gs://YOUR_GCS_SOURCE_BUCKET/destination_output_uri_prefix/";
    String project = "YOUR_PROJECT_ID";
    batchPredictionJobVideoObjectTracking(
        batchPredictionDisplayName, modelId, gcsSourceUri, gcsDestinationOutputUriPrefix, project);
  }

  static void batchPredictionJobVideoObjectTracking(
      String batchPredictionDisplayName,
      String modelId,
      String gcsSourceUri,
      String gcsDestinationOutputUriPrefix,
      String project)
      throws IOException {
    JobServiceSettings jobServiceSettings =
        JobServiceSettings.newBuilder()
            .setEndpoint("us-central1-aiplatform.googleapis.com:443")
            .build();

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (JobServiceClient jobServiceClient = JobServiceClient.create(jobServiceSettings)) {
      String location = "us-central1";
      LocationName locationName = LocationName.of(project, location);
      ModelName modelName = ModelName.of(project, location, modelId);

      VideoObjectTrackingPredictionParams modelParamsObj =
          VideoObjectTrackingPredictionParams.newBuilder()
              .setConfidenceThreshold(((float) 0.5))
              .build();

      Value modelParameters = ValueConverter.toValue(modelParamsObj);

      GcsSource.Builder gcsSource = GcsSource.newBuilder();
      gcsSource.addUris(gcsSourceUri);
      InputConfig inputConfig =
          InputConfig.newBuilder().setInstancesFormat("jsonl").setGcsSource(gcsSource).build();

      GcsDestination gcsDestination =
          GcsDestination.newBuilder().setOutputUriPrefix(gcsDestinationOutputUriPrefix).build();
      OutputConfig outputConfig =
          OutputConfig.newBuilder()
              .setPredictionsFormat("jsonl")
              .setGcsDestination(gcsDestination)
              .build();

      BatchPredictionJob batchPredictionJob =
          BatchPredictionJob.newBuilder()
              .setDisplayName(batchPredictionDisplayName)
              .setModel(modelName.toString())
              .setModelParameters(modelParameters)
              .setInputConfig(inputConfig)
              .setOutputConfig(outputConfig)
              .build();
      BatchPredictionJob batchPredictionJobResponse =
          jobServiceClient.createBatchPredictionJob(locationName, batchPredictionJob);

      System.out.println("Create Batch Prediction Job Video Object Tracking Response");
      System.out.format("\tName: %s\n", batchPredictionJobResponse.getName());
      System.out.format("\tDisplay Name: %s\n", batchPredictionJobResponse.getDisplayName());
      System.out.format("\tModel %s\n", batchPredictionJobResponse.getModel());
      System.out.format(
          "\tModel Parameters: %s\n", batchPredictionJobResponse.getModelParameters());

      System.out.format("\tState: %s\n", batchPredictionJobResponse.getState());
      System.out.format("\tCreate Time: %s\n", batchPredictionJobResponse.getCreateTime());
      System.out.format("\tStart Time: %s\n", batchPredictionJobResponse.getStartTime());
      System.out.format("\tEnd Time: %s\n", batchPredictionJobResponse.getEndTime());
      System.out.format("\tUpdate Time: %s\n", batchPredictionJobResponse.getUpdateTime());
      System.out.format("\tLabels: %s\n", batchPredictionJobResponse.getLabelsMap());

      InputConfig inputConfigResponse = batchPredictionJobResponse.getInputConfig();
      System.out.println("\tInput Config");
      System.out.format("\t\tInstances Format: %s\n", inputConfigResponse.getInstancesFormat());

      GcsSource gcsSourceResponse = inputConfigResponse.getGcsSource();
      System.out.println("\t\tGcs Source");
      System.out.format("\t\t\tUris %s\n", gcsSourceResponse.getUrisList());

      BigQuerySource bigQuerySource = inputConfigResponse.getBigquerySource();
      System.out.println("\t\tBigquery Source");
      System.out.format("\t\t\tInput_uri: %s\n", bigQuerySource.getInputUri());

      OutputConfig outputConfigResponse = batchPredictionJobResponse.getOutputConfig();
      System.out.println("\tOutput Config");
      System.out.format(
          "\t\tPredictions Format: %s\n", outputConfigResponse.getPredictionsFormat());

      GcsDestination gcsDestinationResponse = outputConfigResponse.getGcsDestination();
      System.out.println("\t\tGcs Destination");
      System.out.format(
          "\t\t\tOutput Uri Prefix: %s\n", gcsDestinationResponse.getOutputUriPrefix());

      BigQueryDestination bigQueryDestination = outputConfigResponse.getBigqueryDestination();
      System.out.println("\t\tBig Query Destination");
      System.out.format("\t\t\tOutput Uri: %s\n", bigQueryDestination.getOutputUri());

      BatchDedicatedResources batchDedicatedResources =
          batchPredictionJobResponse.getDedicatedResources();
      System.out.println("\tBatch Dedicated Resources");
      System.out.format(
          "\t\tStarting Replica Count: %s\n", batchDedicatedResources.getStartingReplicaCount());
      System.out.format(
          "\t\tMax Replica Count: %s\n", batchDedicatedResources.getMaxReplicaCount());

      MachineSpec machineSpec = batchDedicatedResources.getMachineSpec();
      System.out.println("\t\tMachine Spec");
      System.out.format("\t\t\tMachine Type: %s\n", machineSpec.getMachineType());
      System.out.format("\t\t\tAccelerator Type: %s\n", machineSpec.getAcceleratorType());
      System.out.format("\t\t\tAccelerator Count: %s\n", machineSpec.getAcceleratorCount());

      ManualBatchTuningParameters manualBatchTuningParameters =
          batchPredictionJobResponse.getManualBatchTuningParameters();
      System.out.println("\tManual Batch Tuning Parameters");
      System.out.format("\t\tBatch Size: %s\n", manualBatchTuningParameters.getBatchSize());

      OutputInfo outputInfo = batchPredictionJobResponse.getOutputInfo();
      System.out.println("\tOutput Info");
      System.out.format("\t\tGcs Output Directory: %s\n", outputInfo.getGcsOutputDirectory());
      System.out.format("\t\tBigquery Output Dataset: %s\n", outputInfo.getBigqueryOutputDataset());

      Status status = batchPredictionJobResponse.getError();
      System.out.println("\tError");
      System.out.format("\t\tCode: %s\n", status.getCode());
      System.out.format("\t\tMessage: %s\n", status.getMessage());
      List<Any> details = status.getDetailsList();

      for (Status partialFailure : batchPredictionJobResponse.getPartialFailuresList()) {
        System.out.println("\tPartial Failure");
        System.out.format("\t\tCode: %s\n", partialFailure.getCode());
        System.out.format("\t\tMessage: %s\n", partialFailure.getMessage());
        List<Any> partialFailureDetailsList = partialFailure.getDetailsList();
      }

      ResourcesConsumed resourcesConsumed = batchPredictionJobResponse.getResourcesConsumed();
      System.out.println("\tResources Consumed");
      System.out.format("\t\tReplica Hours: %s\n", resourcesConsumed.getReplicaHours());

      CompletionStats completionStats = batchPredictionJobResponse.getCompletionStats();
      System.out.println("\tCompletion Stats");
      System.out.format("\t\tSuccessful Count: %s\n", completionStats.getSuccessfulCount());
      System.out.format("\t\tFailed Count: %s\n", completionStats.getFailedCount());
      System.out.format("\t\tIncomplete Count: %s\n", completionStats.getIncompleteCount());
    }
  }
}

Node.js

このサンプルを試す前に、Vertex AI クイックスタート: クライアント ライブラリの使用にある Node.js の設定手順を完了してください。詳細については、Vertex AI Node.js API のリファレンス ドキュメントをご覧ください。

Vertex AI に対する認証を行うには、アプリケーションのデフォルト認証情報を設定します。詳細については、ローカル開発環境の認証を設定するをご覧ください。

/**
 * TODO(developer): Uncomment these variables before running the sample.\
 * (Not necessary if passing values as arguments)
 */

// const batchPredictionDisplayName = 'YOUR_BATCH_PREDICTION_DISPLAY_NAME';
// const modelId = 'YOUR_MODEL_ID';
// const gcsSourceUri = 'YOUR_GCS_SOURCE_URI';
// const gcsDestinationOutputUriPrefix = 'YOUR_GCS_DEST_OUTPUT_URI_PREFIX';
//    eg. "gs://<your-gcs-bucket>/destination_path"
// const project = 'YOUR_PROJECT_ID';
// const location = 'YOUR_PROJECT_LOCATION';
const aiplatform = require('@google-cloud/aiplatform');
const {params} = aiplatform.protos.google.cloud.aiplatform.v1.schema.predict;

// Imports the Google Cloud Job Service Client library
const {JobServiceClient} = require('@google-cloud/aiplatform').v1;

// Specifies the location of the api endpoint
const clientOptions = {
  apiEndpoint: 'us-central1-aiplatform.googleapis.com',
};

// Instantiates a client
const jobServiceClient = new JobServiceClient(clientOptions);

async function createBatchPredictionJobVideoObjectTracking() {
  // Configure the parent resource
  const parent = `projects/${project}/locations/${location}`;
  const modelName = `projects/${project}/locations/${location}/models/${modelId}`;

  // For more information on how to configure the model parameters object, see
  // https://cloud.google.com/ai-platform-unified/docs/predictions/batch-predictions
  const modelParamsObj = new params.VideoObjectTrackingPredictionParams({
    confidenceThreshold: 0.5,
  });

  const modelParameters = modelParamsObj.toValue();

  const inputConfig = {
    instancesFormat: 'jsonl',
    gcsSource: {uris: [gcsSourceUri]},
  };
  const outputConfig = {
    predictionsFormat: 'jsonl',
    gcsDestination: {outputUriPrefix: gcsDestinationOutputUriPrefix},
  };
  const batchPredictionJob = {
    displayName: batchPredictionDisplayName,
    model: modelName,
    modelParameters,
    inputConfig,
    outputConfig,
  };
  const request = {
    parent,
    batchPredictionJob,
  };

  // Create batch prediction job request
  const [response] = await jobServiceClient.createBatchPredictionJob(request);

  console.log('Create batch prediction job video object tracking response');
  console.log(`Name : ${response.name}`);
  console.log('Raw response:');
  console.log(JSON.stringify(response, null, 2));
}
createBatchPredictionJobVideoObjectTracking();

Python

Python をインストールまたは更新する方法については、Vertex AI SDK for Python をインストールするをご覧ください。詳細については、Python API リファレンス ドキュメントをご覧ください。

def create_batch_prediction_job_sample(
    project: str,
    location: str,
    model_resource_name: str,
    job_display_name: str,
    gcs_source: Union[str, Sequence[str]],
    gcs_destination: str,
    sync: bool = True,
):
    aiplatform.init(project=project, location=location)

    my_model = aiplatform.Model(model_resource_name)

    batch_prediction_job = my_model.batch_predict(
        job_display_name=job_display_name,
        gcs_source=gcs_source,
        gcs_destination_prefix=gcs_destination,
        sync=sync,
    )

    batch_prediction_job.wait()

    print(batch_prediction_job.display_name)
    print(batch_prediction_job.resource_name)
    print(batch_prediction_job.state)
    return batch_prediction_job

バッチ予測の結果を取得する

Vertex AI は、指定された宛先にバッチ予測の出力を送信します。

バッチ予測タスクが完了すると、リクエストで指定した Cloud Storage バケットに予測の出力が保存されます。

バッチ予測結果の例

以下は、動画オブジェクト トラッキング モデルのバッチ予測結果の例です。

{
  "instance": {
   "content": "gs://bucket/video.mp4",
    "mimeType": "video/mp4",
    "timeSegmentStart": "1s",
    "timeSegmentEnd": "5s"
  }
  "prediction": [{
    "id": "1",
    "displayName": "cat",
    "timeSegmentStart": "1.2s",
    "timeSegmentEnd": "3.4s",
    "frames": [{
      "timeOffset": "1.2s",
      "xMin": 0.1,
      "xMax": 0.2,
      "yMin": 0.3,
      "yMax": 0.4
    }, {
      "timeOffset": "3.4s",
      "xMin": 0.2,
      "xMax": 0.3,
      "yMin": 0.4,
      "yMax": 0.5,
    }],
    "confidence": 0.7
  }, {
    "id": "1",
    "displayName": "cat",
    "timeSegmentStart": "4.8s",
    "timeSegmentEnd": "4.8s",
    "frames": [{
      "timeOffset": "4.8s",
      "xMin": 0.2,
      "xMax": 0.3,
      "yMin": 0.4,
      "yMax": 0.5,
    }],
    "confidence": 0.6
  }, {
    "id": "2",
    "displayName": "dog",
    "timeSegmentStart": "1.2s",
    "timeSegmentEnd": "3.4s",
    "frames": [{
      "timeOffset": "1.2s",
      "xMin": 0.1,
      "xMax": 0.2,
      "yMin": 0.3,
      "yMax": 0.4
    }, {
      "timeOffset": "3.4s",
      "xMin": 0.2,
      "xMax": 0.3,
      "yMin": 0.4,
      "yMax": 0.5,
    }],
    "confidence": 0.5
  }]
}