Traduire du contenu

Restez organisé à l'aide des collections Enregistrez et classez les contenus selon vos préférences.

Utiliser Cloud Translation – Advanced

Après avoir entraîné votre modèle, vous pouvez traduire du contenu à l'aide de la méthode de l'API Cloud Translation – AdvancedtranslateText. L'API Cloud Translation – Advanced accepte l'utilisation de glossaires et de requêtes de traduction par lot.

REST

Assurez-vous que vous avez activé l'API Cloud AutoML pour votre projet. Cela est nécessaire lorsque vous utilisez des modèles AutoML avec l'API AutoML. Pour activer l'API, consultez le document Premiers pas.

Avant d'utiliser les données de requête ci-dessous, effectuez les remplacements suivants :

  • project-number-or-id par le numéro ou l'ID de votre projet Google Cloud

Méthode HTTP et URL :

POST https://translation.googleapis.com/v3/projects/project-number-or-id/locations/us-central1:translateText

Corps JSON de la requête :

{
  "model": "projects/project-number-or-id/locations/us-central1/models/TRL1395675701985363739",
  "sourceLanguageCode": "en",
  "targetLanguageCode": "ru",
  "contents": ["Dr. Watson, please discard your trash. You've shared unsolicited email with me.
  Let's talk about spam and importance ranking in a confidential mode."]
}

Pour envoyer votre requête, choisissez l'une des options suivantes :

curl

Enregistrez le corps de la requête dans un fichier nommé request.json, puis exécutez la commande suivante :

curl -X POST \
-H "Authorization: Bearer $(gcloud auth application-default print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://translation.googleapis.com/v3/projects/project-number-or-id/locations/us-central1:translateText"

PowerShell

Enregistrez le corps de la requête dans un fichier nommé request.json, puis exécutez la commande suivante :

$cred = gcloud auth application-default print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://translation.googleapis.com/v3/projects/project-number-or-id/locations/us-central1:translateText" | Select-Object -Expand Content

Vous devriez recevoir une réponse JSON de ce type :

{
  "translation": {
    "translatedText": "Доктор Ватсон, пожалуйста, откажитесь от своего мусора.
    Вы поделились нежелательной электронной почтой со мной. Давайте поговорим о
    спаме и важности рейтинга в конфиденциальном режиме.",
    "model": "projects/project-number/locations/us-central1/models/TRL1395675701985363739"
  }
}

Go

import (
	"context"
	"fmt"
	"io"

	translate "cloud.google.com/go/translate/apiv3"
	"cloud.google.com/go/translate/apiv3/translatepb"
)

// translateTextWithModel translates input text and returns translated text.
func translateTextWithModel(w io.Writer, projectID string, location string, sourceLang string, targetLang string, text string, modelID string) error {
	// projectID := "my-project-id"
	// location := "us-central1"
	// sourceLang := "en"
	// targetLang := "fr"
	// text := "Hello, world!"
	// modelID := "your-model-id"

	ctx := context.Background()
	client, err := translate.NewTranslationClient(ctx)
	if err != nil {
		return fmt.Errorf("NewTranslationClient: %v", err)
	}
	defer client.Close()

	req := &translatepb.TranslateTextRequest{
		Parent:             fmt.Sprintf("projects/%s/locations/%s", projectID, location),
		SourceLanguageCode: sourceLang,
		TargetLanguageCode: targetLang,
		MimeType:           "text/plain", // Mime types: "text/plain", "text/html"
		Contents:           []string{text},
		Model:              fmt.Sprintf("projects/%s/locations/%s/models/%s", projectID, location, modelID),
	}

	resp, err := client.TranslateText(ctx, req)
	if err != nil {
		return fmt.Errorf("TranslateText: %v", err)
	}

	// Display the translation for each input text provided
	for _, translation := range resp.GetTranslations() {
		fmt.Fprintf(w, "Translated text: %v\n", translation.GetTranslatedText())
	}

	return nil
}

Java

import com.google.cloud.translate.v3.LocationName;
import com.google.cloud.translate.v3.TranslateTextRequest;
import com.google.cloud.translate.v3.TranslateTextResponse;
import com.google.cloud.translate.v3.Translation;
import com.google.cloud.translate.v3.TranslationServiceClient;
import java.io.IOException;

public class TranslateTextWithModel {

  public static void translateTextWithModel() throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "YOUR-PROJECT-ID";
    // Supported Languages: https://cloud.google.com/translate/docs/languages
    String sourceLanguage = "your-source-language";
    String targetLanguage = "your-target-language";
    String text = "your-text";
    String modelId = "YOUR-MODEL-ID";
    translateTextWithModel(projectId, sourceLanguage, targetLanguage, text, modelId);
  }

  // Translating Text with Model
  public static void translateTextWithModel(
      String projectId, String sourceLanguage, String targetLanguage, String text, String modelId)
      throws IOException {

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (TranslationServiceClient client = TranslationServiceClient.create()) {
      // Supported Locations: `global`, [glossary location], or [model location]
      // Glossaries must be hosted in `us-central1`
      // Custom Models must use the same location as your model. (us-central1)
      String location = "us-central1";
      LocationName parent = LocationName.of(projectId, location);
      String modelPath =
          String.format("projects/%s/locations/%s/models/%s", projectId, location, modelId);

      // Supported Mime Types: https://cloud.google.com/translate/docs/supported-formats
      TranslateTextRequest request =
          TranslateTextRequest.newBuilder()
              .setParent(parent.toString())
              .setMimeType("text/plain")
              .setSourceLanguageCode(sourceLanguage)
              .setTargetLanguageCode(targetLanguage)
              .addContents(text)
              .setModel(modelPath)
              .build();

      TranslateTextResponse response = client.translateText(request);

      // Display the translation for each input text provided
      for (Translation translation : response.getTranslationsList()) {
        System.out.printf("Translated text: %s\n", translation.getTranslatedText());
      }
    }
  }
}

Node.js

/**
 * TODO(developer): Uncomment these variables before running the sample.
 */
// const projectId = 'YOUR_PROJECT_ID';
// const location = 'us-central1';
// const modelId = 'YOUR_MODEL_ID';
// const text = 'text to translate';

// Imports the Google Cloud Translation library
const {TranslationServiceClient} = require('@google-cloud/translate');

// Instantiates a client
const translationClient = new TranslationServiceClient();
async function translateTextWithModel() {
  // Construct request
  const request = {
    parent: `projects/${projectId}/locations/${location}`,
    contents: [text],
    mimeType: 'text/plain', // mime types: text/plain, text/html
    sourceLanguageCode: 'en',
    targetLanguageCode: 'ja',
    model: `projects/${projectId}/locations/${location}/models/${modelId}`,
  };

  // Run request
  const [response] = await translationClient.translateText(request);

  for (const translation of response.translations) {
    console.log(`Translated Content: ${translation.translatedText}`);
  }
}

translateTextWithModel();

Python


from google.cloud import translate

def translate_text_with_model(
    text="YOUR_TEXT_TO_TRANSLATE",
    project_id="YOUR_PROJECT_ID",
    model_id="YOUR_MODEL_ID",
):
    """Translates a given text using Translation custom model."""

    client = translate.TranslationServiceClient()

    location = "us-central1"
    parent = f"projects/{project_id}/locations/{location}"
    model_path = f"{parent}/models/{model_id}"

    # Supported language codes: https://cloud.google.com/translate/docs/languages
    response = client.translate_text(
        request={
            "contents": [text],
            "target_language_code": "ja",
            "model": model_path,
            "source_language_code": "en",
            "parent": parent,
            "mime_type": "text/plain",  # mime types: text/plain, text/html
        }
    )
    # Display the translation for each input text provided
    for translation in response.translations:
        print("Translated text: {}".format(translation.translated_text))

Langues supplémentaires

C# : Veuillez suivre les instructions de configuration de C# sur la page des bibliothèques clientes, puis consultez la documentation de référence sur AutoML Translation pour .NET.

PHP : Veuillez suivre les instructions de configuration de PHP sur la page des bibliothèques clientes, puis consultez la documentation de référence sur AutoML Translation pour PHP.

Ruby : Veuillez suivre les instructions de configuration de Ruby sur la page des bibliothèques clientes, puis consultez la documentation de référence sur AutoML Translation pour Ruby.

Utiliser AutoML Translation

Vous pouvez également utiliser AutoML Translation pour traduire du contenu à l'aide de modèles personnalisés.

UI Web

  1. Accédez à la page Modèles AutoML Translation dans Google Cloud Console.

  2. Si le modèle que vous souhaitez utiliser se trouve dans un autre projet, sélectionnez-le dans le sélecteur de projet depuis la barre de titre.

  3. Dans la liste des modèles, sélectionnez celui que vous voulez utiliser pour traduire du texte.

  4. Cliquez sur l'onglet Prédiction du modèle.

  5. Dans la zone de texte, saisissez le contenu à traduire, puis cliquez sur Traduire.

    Vous pouvez comparer les résultats de votre modèle personnalisé au modèle de base (modèle Google My Business), que Cloud Translation - Advanced utilise par défaut.

REST

Avant d'utiliser les données de requête ci-dessous, effectuez les remplacements suivants :

  • model-name : nom complet de votre modèle qui inclut le nom et l'emplacement de votre projet. Voici un exemple de nom de modèle : projects/project-id/locations/us-central1/models/model-id.
  • source-language-text : le texte que vous souhaitez traduire de la langue source vers la langue cible
  • project-id : ID de votre projet Google Cloud Platform

Méthode HTTP et URL :

POST https://automl.googleapis.com/v1/model-name:predict

Corps JSON de la requête :

{
  "payload" : {
     "textSnippet": {
        "content": "source-language-text"
      }
  }
}

Pour envoyer votre requête, choisissez l'une des options suivantes :

curl

Enregistrez le corps de la requête dans un fichier nommé request.json, puis exécutez la commande suivante :

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "x-goog-user-project: project-id" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://automl.googleapis.com/v1/model-name:predict"

PowerShell

Enregistrez le corps de la requête dans un fichier nommé request.json, puis exécutez la commande suivante :

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred"; "x-goog-user-project" = "project-id" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://automl.googleapis.com/v1/model-name:predict" | Select-Object -Expand Content

Vous devriez recevoir une réponse JSON de ce type :

{
  "payload": [
    {
      "translation": {
        "translatedContent": {
          "content": "target-language-text"
        }
      }
    }
  ]
}

Go

import (
	"context"
	"fmt"
	"io"

	automl "cloud.google.com/go/automl/apiv1"
	"cloud.google.com/go/automl/apiv1/automlpb"
)

// translatePredict does a prediction for translate.
func translatePredict(w io.Writer, projectID string, location string, modelID string, content string) error {
	// projectID := "my-project-id"
	// location := "us-central1"
	// modelID := "TRL123456789..."
	// content := "text to translate"

	ctx := context.Background()
	client, err := automl.NewPredictionClient(ctx)
	if err != nil {
		return fmt.Errorf("NewPredictionClient: %v", err)
	}
	defer client.Close()

	req := &automlpb.PredictRequest{
		Name: fmt.Sprintf("projects/%s/locations/%s/models/%s", projectID, location, modelID),
		Payload: &automlpb.ExamplePayload{
			Payload: &automlpb.ExamplePayload_TextSnippet{
				TextSnippet: &automlpb.TextSnippet{
					Content:  content,
					MimeType: "text/plain", // Types: "text/plain", "text/html"
				},
			},
		},
	}

	resp, err := client.Predict(ctx, req)
	if err != nil {
		return fmt.Errorf("Predict: %v", err)
	}

	for _, payload := range resp.GetPayload() {
		fmt.Fprintf(w, "Translated content: %v\n", payload.GetTranslation().GetTranslatedContent().GetContent())
	}

	return nil
}

Java

import com.google.cloud.automl.v1.ExamplePayload;
import com.google.cloud.automl.v1.ModelName;
import com.google.cloud.automl.v1.PredictRequest;
import com.google.cloud.automl.v1.PredictResponse;
import com.google.cloud.automl.v1.PredictionServiceClient;
import com.google.cloud.automl.v1.TextSnippet;
import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Paths;

class TranslatePredict {

  public static void main(String[] args) throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "YOUR_PROJECT_ID";
    String modelId = "YOUR_MODEL_ID";
    String filePath = "path_to_local_file.txt";
    predict(projectId, modelId, filePath);
  }

  static void predict(String projectId, String modelId, String filePath) throws IOException {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (PredictionServiceClient client = PredictionServiceClient.create()) {
      // Get the full path of the model.
      ModelName name = ModelName.of(projectId, "us-central1", modelId);

      String content = new String(Files.readAllBytes(Paths.get(filePath)));

      TextSnippet textSnippet = TextSnippet.newBuilder().setContent(content).build();
      ExamplePayload payload = ExamplePayload.newBuilder().setTextSnippet(textSnippet).build();
      PredictRequest predictRequest =
          PredictRequest.newBuilder().setName(name.toString()).setPayload(payload).build();

      PredictResponse response = client.predict(predictRequest);
      TextSnippet translatedContent =
          response.getPayload(0).getTranslation().getTranslatedContent();
      System.out.format("Translated Content: %s\n", translatedContent.getContent());
    }
  }
}

Node.js

/**
 * TODO(developer): Uncomment these variables before running the sample.
 */
// const projectId = 'YOUR_PROJECT_ID';
// const location = 'us-central1';
// const modelId = 'YOUR_MODEL_ID';
// const filePath = 'path_to_local_file.txt';

// Imports the Google Cloud AutoML library
const {PredictionServiceClient} = require('@google-cloud/automl').v1;
const fs = require('fs');

// Instantiates a client
const client = new PredictionServiceClient();

// Read the file content for translation.
const content = fs.readFileSync(filePath, 'utf8');

async function predict() {
  // Construct request
  const request = {
    name: client.modelPath(projectId, location, modelId),
    payload: {
      textSnippet: {
        content: content,
      },
    },
  };

  const [response] = await client.predict(request);

  console.log(
    'Translated content: ',
    response.payload[0].translation.translatedContent.content
  );
}

predict();

Python

Avant de pouvoir exécuter cet exemple de code, vous devez installer les bibliothèques clientes Python.

  • Le paramètre model_full_id correspond au nom complet de votre modèle. Exemple : projects/434039606874/locations/us-central1/models/3745331181667467569.
from google.cloud import automl

# TODO(developer): Uncomment and set the following variables
# project_id = "YOUR_PROJECT_ID"
# model_id = "YOUR_MODEL_ID"
# file_path = "path_to_local_file.txt"

prediction_client = automl.PredictionServiceClient()

# Get the full path of the model.
model_full_id = automl.AutoMlClient.model_path(project_id, "us-central1", model_id)

# Read the file content for translation.
with open(file_path, "rb") as content_file:
    content = content_file.read()
content.decode("utf-8")

text_snippet = automl.TextSnippet(content=content)
payload = automl.ExamplePayload(text_snippet=text_snippet)

response = prediction_client.predict(name=model_full_id, payload=payload)
translated_content = response.payload[0].translation.translated_content

print(u"Translated content: {}".format(translated_content.content))

Langues supplémentaires

C# : Veuillez suivre les instructions de configuration de C# sur la page des bibliothèques clientes, puis consultez la documentation de référence sur AutoML Translation pour .NET.

PHP : Veuillez suivre les instructions de configuration de PHP sur la page des bibliothèques clientes, puis consultez la documentation de référence sur AutoML Translation pour PHP.

Ruby : Veuillez suivre les instructions de configuration de Ruby sur la page des bibliothèques clientes, puis consultez la documentation de référence sur AutoML Translation pour Ruby.