Restez organisé à l'aide des collections
Enregistrez et classez les contenus selon vos préférences.
Résoudre les problèmes liés à PyTorch – TPU
Ce guide fournit des informations de dépannage pour vous aider à identifier et à résoudre les problèmes que vous pouvez rencontrer lors de l'entraînement de modèles PyTorch sur Cloud TPU. Pour obtenir des conseils plus généraux pour faire vos premiers pas avec Cloud TPU, consultez le guide de démarrage rapide de PyTorch.
Vous pouvez spécifier des variables d'environnement pour contrôler le comportement de la pile logicielle PyTorch/XLA.
Si vous rencontrez un bug inattendu et que vous avez besoin d'aide, signalez-le sur GitHub.
Gérer les Tensors XLA
XLA Tensor Quirks décrit ce que vous devez et ne devez pas faire lorsque vous utilisez des Tensors XLA et des pondérations partagées.
Sauf indication contraire, le contenu de cette page est régi par une licence Creative Commons Attribution 4.0, et les échantillons de code sont régis par une licence Apache 2.0. Pour en savoir plus, consultez les Règles du site Google Developers. Java est une marque déposée d'Oracle et/ou de ses sociétés affiliées.
Dernière mise à jour le 2025/09/04 (UTC).
[[["Facile à comprendre","easyToUnderstand","thumb-up"],["J'ai pu résoudre mon problème","solvedMyProblem","thumb-up"],["Autre","otherUp","thumb-up"]],[["Difficile à comprendre","hardToUnderstand","thumb-down"],["Informations ou exemple de code incorrects","incorrectInformationOrSampleCode","thumb-down"],["Il n'y a pas l'information/les exemples dont j'ai besoin","missingTheInformationSamplesINeed","thumb-down"],["Problème de traduction","translationIssue","thumb-down"],["Autre","otherDown","thumb-down"]],["Dernière mise à jour le 2025/09/04 (UTC)."],[],[],null,["# Troubleshooting PyTorch - TPU\n=============================\n\nThis guide provides troubleshooting information to\nhelp you identify and resolve problems you might encounter while training\nPyTorch models on Cloud TPU. For a more general guide to\ngetting started with Cloud TPU, see the\n[PyTorch quickstart](/tpu/docs/run-calculation-pytorch).\n| **Note:** If you aren't able to resolve your issue using this guide, see [Getting Support](/tpu/docs/getting-support) for further assistance.\n\nTroubleshooting slow training performance\n-----------------------------------------\n\nIf your model trains slowly, [generate and review a metrics report.](https://pytorch.org/xla/release/r2.6/learn/troubleshoot.html#get-a-metrics-report)\n\nTo automatically analyze the metrics report and provide a summary, run\nyour workload with PT_XLA_DEBUG=1.\n\nFor more information about issues that might cause your model to train slowly,\nsee [Known performance caveats](https://pytorch.org/xla/release/r2.6/learn/troubleshoot.html#known-performance-caveats).\n\nPerformance profiling\n---------------------\n\nTo profile your workload in-depth to discover bottlenecks, review these resources:\n\n- [PyTorch/XLA performance profiling](https://cloud.google.com/tpu/docs/pytorch-xla-performance-profiling-tpu-vm)\n- [Sample MNIST training script with profiling](https://github.com/pytorch/xla/blob/master/test/test_profile_mp_mnist.py)\n\nMore debugging tools\n--------------------\n\nYou can specify [environment variables](https://pytorch.org/xla/release/r2.6/learn/troubleshoot.html#environment-variables)\nto control the behavior of the PyTorch/XLA software stack.\n\nIf you encounter an unexpected bug and need help, [file a GitHub issue](https://github.com/pytorch/xla).\n\nManaging XLA tensors\n--------------------\n\n[XLA tensor Quirks](https://pytorch.org/xla/release/r2.6/learn/troubleshoot.html#xla-tensor-quirks)\ndescribes what you should and shouldn't do when working with XLA tensors and\nshared weights."]]