Rilevamento di diversi altoparlanti in una registrazione audio

Questa pagina descrive come ricevere etichette per diversi altoparlanti in dati audio trascritti da Speech-to-Text.

Talvolta, i dati audio contengono campioni di più persone. Ad esempio, l'audio di una telefonata solitamente include voci di due o più persone. La trascrizione della chiamata, se possibile, include chi parla a che ora.

Dialer altoparlante

Speech-to-Text è in grado di riconoscere più altoparlanti nella stessa clip audio. Quando invii una richiesta di trascrizione di audio a Speech-to-Text, puoi includere un parametro che indica a Speech-to-Text di identificare i diversi altoparlanti nel campione audio. Questa funzionalità, chiamata dialer dell'altoparlante, rileva quando gli altoparlanti cambiano ed etichetta in base al numero delle singole voci rilevate nell'audio.

Se attivi l'opzione Dialer del relatore nella richiesta di trascrizione, Speech-to-Text tenta di distinguere le diverse voci incluse nel campione audio. Il risultato della trascrizione tagga ogni parola con un numero assegnato a singoli oratori. Le parole pronunciate dallo stesso altoparlante sono uguali. Un risultato della trascrizione può includere numeri fino al maggior numero di altoparlanti che Speech-to-Text è in grado di identificare in modo univoco nel campione audio.

Quando utilizzi la diarizzazione dei relatori, Speech-to-Text produce un aggregato in esecuzione di tutti i risultati forniti nella trascrizione. Ogni risultato include le parole del risultato precedente. In questo modo, l'array words nel risultato finale fornisce i risultati diarizzati completi della trascrizione.

Consulta la pagina di assistenza per le lingue per verificare se questa funzionalità è disponibile per la tua lingua.

Attivare la diarizzazione degli altoparlanti in una richiesta

Per attivare la diarizzazione degli altoparlanti, devi impostare il campo enableSpeakerDiarization su true nei parametri SpeakerDiarizationConfig per la richiesta. Per migliorare i risultati della trascrizione, devi anche specificare il numero di altoparlanti presenti nel clip audio impostando il campo diarizationSpeakerCount nei parametri SpeakerDiarizationConfig. Speech-to-Text utilizza un valore predefinito se non fornisci un valore per diarizationSpeakerCount.

Speech-to-Text supporta la diarizzazione degli altoparlanti per tutti i metodi di riconoscimento vocale: speech:recognize speech:longrunningrecognize e Streaming.

Utilizzare un file locale

Il seguente snippet di codice dimostra come abilitare la diarizzazione dei relatori in una richiesta di trascrizione per la sintesi vocale utilizzando un file locale

Protocollo

Per informazioni complete, consulta l'endpoint API speech:recognize.

Per eseguire il riconoscimento vocale sincrono, effettua una richiesta POST e fornisci il corpo della richiesta appropriato. Di seguito è riportato un esempio di richiesta POST tramite curl. L'esempio utilizza il token di accesso per un account di servizio configurato per il progetto tramite l'interfaccia a riga di comando di Google Cloud. Per istruzioni sull'installazione dell'interfaccia a riga di comando gcloud, sulla configurazione di un progetto con un account di servizio e sull'ottenimento di un token di accesso, consulta la guida rapida.

curl -s -H "Content-Type: application/json" \
    -H "Authorization: Bearer $(gcloud auth application-default print-access-token)" \
    https://speech.googleapis.com/v1p1beta1/speech:recognize \
    --data '{
    "config": {
        "encoding": "LINEAR16",
        "languageCode": "en-US",
        "enableSpeakerDiarization": true,
        "diarizationSpeakerCount": 2,
        "model": "phone_call"
    },
    "audio": {
        "uri": "gs://cloud-samples-tests/speech/commercial_mono.wav"
    }
}' > speaker-diarization.txt

Se la richiesta ha esito positivo, il server restituisce un codice di stato HTTP 200 OK e la risposta in formato JSON, salvata in un file denominato speaker-diarization.txt.

{
  "results": [
    {
      "alternatives": [
        {
          "transcript": "hi I'd like to buy a Chromecast and I was wondering whether you could help me with that certainly which color would you like we have blue black and red uh let's go with the black one would you like the new Chromecast Ultra model or the regular Chrome Cast regular Chromecast is fine thank you okay sure we like to ship it regular or Express Express please terrific it's on the way thank you thank you very much bye",
          "confidence": 0.92142606,
          "words": [
            {
              "startTime": "0s",
              "endTime": "1.100s",
              "word": "hi",
              "speakerTag": 2
            },
            {
              "startTime": "1.100s",
              "endTime": "2s",
              "word": "I'd",
              "speakerTag": 2
            },
            {
              "startTime": "2s",
              "endTime": "2s",
              "word": "like",
              "speakerTag": 2
            },
            {
              "startTime": "2s",
              "endTime": "2.100s",
              "word": "to",
              "speakerTag": 2
            },
            ...
            {
              "startTime": "6.500s",
              "endTime": "6.900s",
              "word": "certainly",
              "speakerTag": 1
            },
            {
              "startTime": "6.900s",
              "endTime": "7.300s",
              "word": "which",
              "speakerTag": 1
            },
            {
              "startTime": "7.300s",
              "endTime": "7.500s",
              "word": "color",
              "speakerTag": 1
            },
            ...
          ]
        }
      ],
      "languageCode": "en-us"
    }
  ]
}

Java

/**
 * Transcribe the given audio file using speaker diarization.
 *
 * @param fileName the path to an audio file.
 */
public static void transcribeDiarization(String fileName) throws Exception {
  Path path = Paths.get(fileName);
  byte[] content = Files.readAllBytes(path);

  try (SpeechClient speechClient = SpeechClient.create()) {
    // Get the contents of the local audio file
    RecognitionAudio recognitionAudio =
        RecognitionAudio.newBuilder().setContent(ByteString.copyFrom(content)).build();

    SpeakerDiarizationConfig speakerDiarizationConfig =
        SpeakerDiarizationConfig.newBuilder()
            .setEnableSpeakerDiarization(true)
            .setMinSpeakerCount(2)
            .setMaxSpeakerCount(2)
            .build();

    // Configure request to enable Speaker diarization
    RecognitionConfig config =
        RecognitionConfig.newBuilder()
            .setEncoding(AudioEncoding.LINEAR16)
            .setLanguageCode("en-US")
            .setSampleRateHertz(8000)
            .setDiarizationConfig(speakerDiarizationConfig)
            .build();

    // Perform the transcription request
    RecognizeResponse recognizeResponse = speechClient.recognize(config, recognitionAudio);

    // Speaker Tags are only included in the last result object, which has only one alternative.
    SpeechRecognitionAlternative alternative =
        recognizeResponse.getResults(recognizeResponse.getResultsCount() - 1).getAlternatives(0);

    // The alternative is made up of WordInfo objects that contain the speaker_tag.
    WordInfo wordInfo = alternative.getWords(0);
    int currentSpeakerTag = wordInfo.getSpeakerTag();

    // For each word, get all the words associated with one speaker, once the speaker changes,
    // add a new line with the new speaker and their spoken words.
    StringBuilder speakerWords =
        new StringBuilder(
            String.format("Speaker %d: %s", wordInfo.getSpeakerTag(), wordInfo.getWord()));

    for (int i = 1; i < alternative.getWordsCount(); i++) {
      wordInfo = alternative.getWords(i);
      if (currentSpeakerTag == wordInfo.getSpeakerTag()) {
        speakerWords.append(" ");
        speakerWords.append(wordInfo.getWord());
      } else {
        speakerWords.append(
            String.format("\nSpeaker %d: %s", wordInfo.getSpeakerTag(), wordInfo.getWord()));
        currentSpeakerTag = wordInfo.getSpeakerTag();
      }
    }

    System.out.println(speakerWords.toString());
  }
}

Node.js

const fs = require('fs');

// Imports the Google Cloud client library
const speech = require('@google-cloud/speech').v1p1beta1;

// Creates a client
const client = new speech.SpeechClient();

/**
 * TODO(developer): Uncomment the following lines before running the sample.
 */
// const fileName = 'Local path to audio file, e.g. /path/to/audio.raw';

const config = {
  encoding: 'LINEAR16',
  sampleRateHertz: 8000,
  languageCode: 'en-US',
  enableSpeakerDiarization: true,
  minSpeakerCount: 2,
  maxSpeakerCount: 2,
  model: 'phone_call',
};

const audio = {
  content: fs.readFileSync(fileName).toString('base64'),
};

const request = {
  config: config,
  audio: audio,
};

const [response] = await client.recognize(request);
const transcription = response.results
  .map(result => result.alternatives[0].transcript)
  .join('\n');
console.log(`Transcription: ${transcription}`);
console.log('Speaker Diarization:');
const result = response.results[response.results.length - 1];
const wordsInfo = result.alternatives[0].words;
// Note: The transcript within each result is separate and sequential per result.
// However, the words list within an alternative includes all the words
// from all the results thus far. Thus, to get all the words with speaker
// tags, you only have to take the words list from the last result:
wordsInfo.forEach(a =>
  console.log(` word: ${a.word}, speakerTag: ${a.speakerTag}`)
);

Python

from google.cloud import speech_v1p1beta1 as speech

client = speech.SpeechClient()

speech_file = "resources/commercial_mono.wav"

with open(speech_file, "rb") as audio_file:
    content = audio_file.read()

audio = speech.RecognitionAudio(content=content)

diarization_config = speech.SpeakerDiarizationConfig(
  enable_speaker_diarization=True,
  min_speaker_count=2,
  max_speaker_count=10,
)

config = speech.RecognitionConfig(
    encoding=speech.RecognitionConfig.AudioEncoding.LINEAR16,
    sample_rate_hertz=8000,
    language_code="en-US",
    diarization_config=diarization_config,
)

print("Waiting for operation to complete...")
response = client.recognize(config=config, audio=audio)

# The transcript within each result is separate and sequential per result.
# However, the words list within an alternative includes all the words
# from all the results thus far. Thus, to get all the words with speaker
# tags, you only have to take the words list from the last result:
result = response.results[-1]

words_info = result.alternatives[0].words

# Printing out the output:
for word_info in words_info:
    print(
        u"word: '{}', speaker_tag: {}".format(word_info.word, word_info.speaker_tag)
    )

Utilizzare un bucket Cloud Storage

Il seguente snippet di codice mostra come abilitare la disabilità del relatore in una richiesta di trascrizione di Speech-to-Text utilizzando un file Google Cloud Storage

Java

/**
 * Transcribe a remote audio file using speaker diarization.
 *
 * @param gcsUri the path to an audio file.
 */
public static void transcribeDiarizationGcs(String gcsUri) throws Exception {
  try (SpeechClient speechClient = SpeechClient.create()) {
    SpeakerDiarizationConfig speakerDiarizationConfig =
        SpeakerDiarizationConfig.newBuilder()
            .setEnableSpeakerDiarization(true)
            .setMinSpeakerCount(2)
            .setMaxSpeakerCount(2)
            .build();

    // Configure request to enable Speaker diarization
    RecognitionConfig config =
        RecognitionConfig.newBuilder()
            .setEncoding(AudioEncoding.LINEAR16)
            .setLanguageCode("en-US")
            .setSampleRateHertz(8000)
            .setDiarizationConfig(speakerDiarizationConfig)
            .build();

    // Set the remote path for the audio file
    RecognitionAudio audio = RecognitionAudio.newBuilder().setUri(gcsUri).build();

    // Use non-blocking call for getting file transcription
    OperationFuture<LongRunningRecognizeResponse, LongRunningRecognizeMetadata> response =
        speechClient.longRunningRecognizeAsync(config, audio);

    while (!response.isDone()) {
      System.out.println("Waiting for response...");
      Thread.sleep(10000);
    }

    // Speaker Tags are only included in the last result object, which has only one alternative.
    LongRunningRecognizeResponse longRunningRecognizeResponse = response.get();
    SpeechRecognitionAlternative alternative =
        longRunningRecognizeResponse
            .getResults(longRunningRecognizeResponse.getResultsCount() - 1)
            .getAlternatives(0);

    // The alternative is made up of WordInfo objects that contain the speaker_tag.
    WordInfo wordInfo = alternative.getWords(0);
    int currentSpeakerTag = wordInfo.getSpeakerTag();

    // For each word, get all the words associated with one speaker, once the speaker changes,
    // add a new line with the new speaker and their spoken words.
    StringBuilder speakerWords =
        new StringBuilder(
            String.format("Speaker %d: %s", wordInfo.getSpeakerTag(), wordInfo.getWord()));

    for (int i = 1; i < alternative.getWordsCount(); i++) {
      wordInfo = alternative.getWords(i);
      if (currentSpeakerTag == wordInfo.getSpeakerTag()) {
        speakerWords.append(" ");
        speakerWords.append(wordInfo.getWord());
      } else {
        speakerWords.append(
            String.format("\nSpeaker %d: %s", wordInfo.getSpeakerTag(), wordInfo.getWord()));
        currentSpeakerTag = wordInfo.getSpeakerTag();
      }
    }

    System.out.println(speakerWords.toString());
  }
}

Node.js

// Imports the Google Cloud client library
const speech = require('@google-cloud/speech').v1p1beta1;

// Creates a client
const client = new speech.SpeechClient();

/**
 * TODO(developer): Uncomment the following line before running the sample.
 */
// const uri = path to GCS audio file e.g. `gs:/bucket/audio.wav`;

const config = {
  encoding: 'LINEAR16',
  sampleRateHertz: 8000,
  languageCode: 'en-US',
  enableSpeakerDiarization: true,
  minSpeakerCount: 2,
  maxSpeakerCount: 2,
  model: 'phone_call',
};

const audio = {
  uri: gcsUri,
};

const request = {
  config: config,
  audio: audio,
};

const [response] = await client.recognize(request);
const transcription = response.results
  .map(result => result.alternatives[0].transcript)
  .join('\n');
console.log(`Transcription: ${transcription}`);
console.log('Speaker Diarization:');
const result = response.results[response.results.length - 1];
const wordsInfo = result.alternatives[0].words;
// Note: The transcript within each result is separate and sequential per result.
// However, the words list within an alternative includes all the words
// from all the results thus far. Thus, to get all the words with speaker
// tags, you only have to take the words list from the last result:
wordsInfo.forEach(a =>
  console.log(` word: ${a.word}, speakerTag: ${a.speakerTag}`)
);