Memeriksa penyimpanan dan database Google Cloud untuk data sensitif

Mengelola data sensitif yang disimpan di repositori penyimpanan dengan benar dimulai dengan klasifikasi penyimpanan: mengidentifikasi tempat data sensitif Anda berada di repositori, jenis data sensitif, dan cara data tersebut digunakan. Pengetahuan ini dapat membantu Anda menetapkan kontrol akses dan izin berbagi dengan benar, serta dapat menjadi bagian dari rencana pemantauan yang sedang berlangsung.

Sensitive Data Protection dapat mendeteksi dan mengklasifikasikan data sensitif yang disimpan di lokasi Cloud Storage, jenis Datastore, atau tabel BigQuery. Saat memindai file di lokasi Cloud Storage, Sensitive Data Protection mendukung pemindaian file biner, teks, gambar, Microsoft Word, Microsoft Excel, Microsoft Powerpoint, PDF, dan Apache Avro. File jenis yang tidak dikenal akan dipindai sebagai file biner. Untuk informasi selengkapnya tentang jenis file yang didukung, lihat Jenis file yang didukung.

Untuk memeriksa penyimpanan dan database guna menemukan data sensitif, Anda menentukan lokasi data dan jenis data sensitif yang harus dicari oleh Perlindungan Data Sensitif. Sensitive Data Protection memulai tugas yang memeriksa data di lokasi tertentu, lalu menyediakan detail tentang infoTypes yang ditemukan dalam konten, nilai likelihood, dan lainnya.

Anda dapat menyiapkan pemeriksaan penyimpanan dan database menggunakan Perlindungan Data Sensitif di konsol Google Cloud, melalui RESTful DLP API, atau secara terprogram menggunakan library klien Perlindungan Data Sensitif dalam salah satu dari beberapa bahasa.

Topik ini mencakup:

  • Praktik terbaik untuk menyiapkan pemindaian repositori dan database penyimpanan Google Cloud.
  • Petunjuk untuk menyiapkan pemindaian inspeksi menggunakan Sensitive Data Protection di konsol Google Cloud, dan (opsional) untuk menjadwalkan pemindaian inspeksi berulang secara berkala.
  • Contoh JSON dan kode untuk setiap jenis repositori penyimpanan Google Cloud: (Cloud Storage, Firestore dalam mode Datastore (Datastore), dan BigQuery).
  • Ringkasan mendetail tentang opsi konfigurasi untuk tugas pemindaian.
  • Petunjuk cara mengambil hasil pemindaian dan cara mengelola tugas pemindaian yang dibuat dari setiap permintaan yang berhasil.

Praktik terbaik

Mengidentifikasi dan memprioritaskan pemindaian

Anda harus mengevaluasi aset terlebih dahulu dan menentukan aset mana yang memiliki prioritas tertinggi untuk pemindaian. Saat baru memulai, Anda mungkin memiliki banyak data yang belum diproses yang memerlukan klasifikasi, dan tidak mungkin untuk memindainya sekaligus. Pilih data yang awalnya menimbulkan potensi risiko tertinggi—misalnya, data yang sering diakses, dapat diakses secara luas, atau tidak diketahui.

Memastikan bahwa Sensitive Data Protection dapat mengakses data Anda

Sensitive Data Protection harus dapat mengakses data yang akan dipindai. Pastikan akun layanan Perlindungan Data Sensitif diizinkan untuk membaca resource Anda.

Membatasi cakupan pemindaian pertama

Untuk hasil terbaik, batasi cakupan tugas pertama Anda, bukan memindai semua data Anda. Mulai dengan satu tabel, satu bucket, atau beberapa file dan gunakan sampling. Dengan membatasi cakupan pemeriksaan pertama, Anda dapat menentukan detektor yang akan diaktifkan dan aturan pengecualian yang mungkin diperlukan untuk mengurangi positif palsu sehingga temuan Anda akan lebih bermakna. Hindari mengaktifkan semua infoTypes jika Anda tidak memerlukan semuanya, karena positif palsu atau temuan yang tidak dapat digunakan dapat mempersulit penilaian risiko Anda. Meskipun berguna dalam skenario tertentu, infoType seperti DATE, TIME, DOMAIN_NAME, dan URL cocok dengan berbagai temuan dan mungkin tidak berguna untuk diaktifkan untuk pemindaian data besar.

Saat mengambil sampel file terstruktur—seperti file CSV, TSV, atau file Avro—pastikan ukuran sampel cukup besar untuk mencakup header lengkap file dan baris data. Untuk informasi selengkapnya, lihat Memindai file terstruktur dalam mode penguraian terstruktur.

Menjadwalkan pemindaian

Gunakan pemicu tugas Perlindungan Data Sensitif untuk menjalankan pemindaian dan membuat temuan secara otomatis setiap hari, mingguan, atau kuartalan. Pemindaian ini juga dapat dikonfigurasi untuk hanya memeriksa data yang telah berubah sejak pemindaian terakhir, yang dapat menghemat waktu dan mengurangi biaya. Menjalankan pemindaian secara rutin dapat membantu Anda mengidentifikasi tren atau anomali dalam hasil pemindaian.

Latensi tugas

Tidak ada tujuan tingkat layanan (SLO) yang dijamin untuk tugas dan pemicu tugas. Latensi dipengaruhi oleh beberapa faktor, termasuk jumlah data yang akan dipindai, repositori penyimpanan yang dipindai, jenis dan jumlah infoTypes yang Anda pindai, region tempat tugas diproses, dan resource komputasi yang tersedia di region tersebut. Oleh karena itu, latensi tugas pemeriksaan tidak dapat ditentukan sebelumnya.

Untuk membantu mengurangi latensi tugas, Anda dapat mencoba hal berikut:

  • Jika sampling tersedia untuk tugas atau pemicu tugas, aktifkan.
  • Hindari mengaktifkan infoTypes yang tidak diperlukan. Meskipun hal berikut berguna dalam skenario tertentu, infoTypes ini dapat membuat permintaan berjalan jauh lebih lambat daripada permintaan yang tidak menyertakannya:

    • PERSON_NAME
    • FEMALE_NAME
    • MALE_NAME
    • FIRST_NAME
    • LAST_NAME
    • DATE_OF_BIRTH
    • LOCATION
    • STREET_ADDRESS
    • ORGANIZATION_NAME
  • Selalu tentukan infoTypes secara eksplisit. Jangan gunakan daftar infoTypes kosong.

  • Jika memungkinkan, gunakan region pemrosesan yang berbeda.

Jika Anda masih mengalami masalah latensi dengan tugas setelah mencoba teknik ini, pertimbangkan untuk menggunakan permintaan content.inspect atau content.deidentify, bukan tugas. Metode ini tercakup dalam Perjanjian Tingkat Layanan. Untuk mengetahui informasi selengkapnya, lihat Perjanjian Tingkat Layanan Perlindungan Data Sensitif.

Sebelum memulai

Petunjuk yang diberikan dalam topik ini mengasumsikan hal berikut:

Klasifikasi penyimpanan memerlukan cakupan OAuth berikut: https://www.googleapis.com/auth/cloud-platform. Untuk informasi selengkapnya, lihat Mengautentikasi ke DLP API.

Memeriksa lokasi Cloud Storage

Anda dapat menyiapkan pemeriksaan Perlindungan Data Sensitif untuk lokasi Cloud Storage menggunakan konsol Google Cloud, DLP API melalui permintaan REST atau RPC, atau secara terprogram dalam beberapa bahasa menggunakan library klien. Untuk informasi tentang parameter yang disertakan dengan JSON dan contoh kode berikut, lihat "Mengonfigurasi pemeriksaan penyimpanan" nanti dalam topik ini.

Sensitive Data Protection mengandalkan ekstensi file dan jenis media (MIME) untuk mengidentifikasi jenis file yang akan dipindai dan mode pemindaian yang akan diterapkan. Misalnya, Perlindungan Data Sensitif memindai file .txt dalam mode teks biasa, meskipun file tersebut disusun sebagai file CSV, yang biasanya dipindai dalam mode penguraian terstruktur.

Untuk menyiapkan tugas pemindaian bucket Cloud Storage menggunakan Perlindungan Data Sensitif:

Konsol

Bagian ini menjelaskan cara memeriksa bucket atau folder Cloud Storage. Jika Anda juga ingin Sensitive Data Protection membuat salinan data yang telah dide-identifikasi, lihat Melakukan de-identifikasi data sensitif yang disimpan di Cloud Storage menggunakan konsol Google Cloud.

  1. Di bagian Sensitive Data Protection di konsol Google Cloud, buka halaman Create job or job trigger.

    Buka Membuat tugas atau pemicu tugas

  2. Masukkan informasi tugas Perlindungan Data Sensitif, lalu klik Continue untuk menyelesaikan setiap langkah:

    • Untuk Langkah 1: Pilih data input, beri nama tugas dengan memasukkan nilai di kolom Name. Di Location, pilih Cloud Storage dari menu Storage type, lalu masukkan lokasi data yang akan dipindai. Bagian Sampling telah dikonfigurasi sebelumnya untuk menjalankan pemindaian sampel terhadap data Anda. Anda dapat menyesuaikan kolom Persentase objek yang dipindai dalam bucket untuk menghemat resource jika Anda memiliki data dalam jumlah besar. Untuk mengetahui detail selengkapnya, lihat Memilih data input.

    • (Opsional) Untuk Langkah 2: Konfigurasikan deteksi, Anda dapat mengonfigurasi jenis data yang akan ditelusuri, yang disebut "infoTypes". Anda dapat memilih dari daftar infoTypes standar, atau Anda dapat memilih template jika ada. Untuk mengetahui detail selengkapnya, lihat Mengonfigurasi deteksi.

    • (Opsional) Untuk Langkah 3: Tambahkan tindakan, pastikan Beri tahu melalui email diaktifkan.

      Aktifkan Save to BigQuery untuk memublikasikan temuan Perlindungan Data Sensitif ke tabel BigQuery. Berikan hal berikut:

      • Untuk Project ID, masukkan project ID tempat hasil Anda disimpan.
      • Untuk Dataset ID, masukkan nama set data yang menyimpan hasil Anda.
      • (Opsional) Untuk Table ID, masukkan nama tabel yang menyimpan hasil Anda. Jika tidak ada ID tabel yang ditentukan, nama default akan ditetapkan ke tabel baru yang mirip dengan berikut ini: dlp_googleapis_[DATE]_1234567890, dengan [DATE] mewakili tanggal pemindaian dijalankan. Jika Anda menentukan tabel yang sudah ada, temuan akan ditambahkan ke tabel tersebut.
      • (Opsional) Aktifkan Include Quote untuk menyertakan string yang cocok dengan detector infoType. Kutipan berpotensi sensitif, sehingga secara default, Perlindungan Data Sensitif tidak menyertakannya dalam temuan.

      Saat data ditulis ke tabel BigQuery, tagihan dan penggunaan kuota akan diterapkan ke project yang berisi tabel tujuan.

      Jika Anda ingin membuat salinan data yang dide-identifikasi, aktifkan Buat salinan yang dide-identifikasi. Untuk mengetahui informasi selengkapnya, lihat Melakukan de-identifikasi data sensitif yang disimpan di Cloud Storage menggunakan konsol Google Cloud.

      Anda juga dapat menyimpan hasil ke Pub/Sub, Security Command Center, Katalog Data, dan Cloud Monitoring. Untuk mengetahui detail selengkapnya, lihat Menambahkan tindakan.

    • (Opsional) Untuk Langkah 4: Jadwalkan, agar pemindaian hanya dijalankan satu kali, biarkan menu ditetapkan ke Tidak ada. Untuk menjadwalkan pemindaian agar berjalan secara berkala, klik Buat pemicu untuk menjalankan tugas sesuai jadwal berkala. Untuk mengetahui detail selengkapnya, lihat Jadwal.

  3. Klik Create.

  4. Setelah tugas Perlindungan Data Sensitif selesai, Anda akan dialihkan ke halaman detail tugas dan diberi tahu melalui email. Anda dapat melihat hasil pemeriksaan di halaman detail tugas.

  5. (Opsional) Jika Anda memilih untuk memublikasikan temuan Perlindungan Data Sensitif ke BigQuery, pada halaman Job details, klik View Findings in BigQuery untuk membuka tabel di UI web BigQuery. Anda kemudian dapat membuat kueri pada tabel dan menganalisis temuan Anda. Untuk informasi selengkapnya tentang cara membuat kueri hasil di BigQuery, lihat Membuat Kueri temuan Perlindungan Data Sensitif di BigQuery.

Protokol

Berikut adalah contoh JSON yang dapat dikirim dalam permintaan POST ke endpoint REST Perlindungan Data Sensitif yang ditentukan. Contoh JSON ini menunjukkan cara menggunakan DLP API untuk memeriksa bucket Cloud Storage. Untuk mengetahui informasi tentang parameter yang disertakan dengan permintaan, lihat "Mengonfigurasi pemeriksaan penyimpanan", nanti dalam topik ini.

Anda dapat mencobanya dengan cepat di API Explorer pada halaman referensi untuk content.inspect:

Buka APIs Explorer

Perlu diingat bahwa permintaan yang berhasil, bahkan di Penjelajah API, akan membuat tugas pemindaian baru. Untuk informasi tentang cara mengontrol tugas pemindaian, lihat "Mengambil hasil inspeksi", nanti dalam topik ini. Untuk informasi umum tentang penggunaan JSON untuk mengirim permintaan ke DLP API, lihat panduan memulai JSON.

Input JSON:

POST https://dlp.googleapis.com/v2/projects/[PROJECT-ID]/dlpJobs?key={YOUR_API_KEY}

{
  "inspectJob":{
    "storageConfig":{
      "cloudStorageOptions":{
        "fileSet":{
          "url":"gs://[BUCKET-NAME]/*"
        },
        "bytesLimitPerFile":"1073741824"
      },
      "timespanConfig":{
        "startTime":"2017-11-13T12:34:29.965633345Z",
        "endTime":"2018-01-05T04:45:04.240912125Z"
      }
    },
    "inspectConfig":{
      "infoTypes":[
        {
          "name":"PHONE_NUMBER"
        }
      ],
      "excludeInfoTypes":false,
      "includeQuote":true,
      "minLikelihood":"LIKELY"
    },
    "actions":[
      {
        "saveFindings":{
          "outputConfig":{
            "table":{
              "projectId":"[PROJECT-ID]",
              "datasetId":"[DATASET-ID]"
            }
          }
        }
      }
    ]
  }
}

Output JSON:

{
  "name":"projects/[PROJECT-ID]/dlpJobs/[JOB-ID]",
  "type":"INSPECT_JOB",
  "state":"PENDING",
  "inspectDetails":{
    "requestedOptions":{
      "snapshotInspectTemplate":{

      },
      "jobConfig":{
        "storageConfig":{
          "cloudStorageOptions":{
            "fileSet":{
              "url":"gs://[BUCKET-NAME]/*"
            },
            "bytesLimitPerFile":"1073741824"
          },
          "timespanConfig":{
            "startTime":"2017-11-13T12:34:29.965633345Z",
            "endTime":"2018-01-05T04:45:04.240912125Z"
          }
        },
        "inspectConfig":{
          "infoTypes":[
            {
              "name":"PHONE_NUMBER"
            }
          ],
          "minLikelihood":"LIKELY",
          "limits":{

          },
          "includeQuote":true
        },
        "actions":[
          {
            "saveFindings":{
              "outputConfig":{
                "table":{
                  "projectId":"[PROJECT-ID]",
                  "datasetId":"[DATASET-ID]",
                  "tableId":"[NEW-TABLE-ID]"
                }
              }
            }
          }
        ]
      }
    }
  },
  "createTime":"2018-11-07T18:01:14.225Z"
}

Java

Untuk mempelajari cara menginstal dan menggunakan library klien untuk Perlindungan Data Sensitif, lihat library klien Perlindungan Data Sensitif.

Untuk melakukan autentikasi ke Perlindungan Data Sensitif, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, lihat Menyiapkan autentikasi untuk lingkungan pengembangan lokal.


import com.google.api.core.SettableApiFuture;
import com.google.cloud.dlp.v2.DlpServiceClient;
import com.google.cloud.pubsub.v1.AckReplyConsumer;
import com.google.cloud.pubsub.v1.MessageReceiver;
import com.google.cloud.pubsub.v1.Subscriber;
import com.google.privacy.dlp.v2.Action;
import com.google.privacy.dlp.v2.CloudStorageOptions;
import com.google.privacy.dlp.v2.CloudStorageOptions.FileSet;
import com.google.privacy.dlp.v2.CreateDlpJobRequest;
import com.google.privacy.dlp.v2.DlpJob;
import com.google.privacy.dlp.v2.GetDlpJobRequest;
import com.google.privacy.dlp.v2.InfoType;
import com.google.privacy.dlp.v2.InfoTypeStats;
import com.google.privacy.dlp.v2.InspectConfig;
import com.google.privacy.dlp.v2.InspectDataSourceDetails;
import com.google.privacy.dlp.v2.InspectJobConfig;
import com.google.privacy.dlp.v2.LocationName;
import com.google.privacy.dlp.v2.StorageConfig;
import com.google.pubsub.v1.ProjectSubscriptionName;
import com.google.pubsub.v1.PubsubMessage;
import java.io.IOException;
import java.util.List;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;
import java.util.stream.Collectors;
import java.util.stream.Stream;

public class InspectGcsFile {

  public static void main(String[] args) throws Exception {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "your-project-id";
    String gcsUri = "gs://" + "your-bucket-name" + "/path/to/your/file.txt";
    String topicId = "your-pubsub-topic-id";
    String subscriptionId = "your-pubsub-subscription-id";
    inspectGcsFile(projectId, gcsUri, topicId, subscriptionId);
  }

  // Inspects a file in a Google Cloud Storage Bucket.
  public static void inspectGcsFile(
      String projectId, String gcsUri, String topicId, String subscriptionId)
      throws ExecutionException, InterruptedException, IOException {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (DlpServiceClient dlp = DlpServiceClient.create()) {
      // Specify the GCS file to be inspected.
      CloudStorageOptions cloudStorageOptions =
          CloudStorageOptions.newBuilder().setFileSet(FileSet.newBuilder().setUrl(gcsUri)).build();

      StorageConfig storageConfig =
          StorageConfig.newBuilder().setCloudStorageOptions(cloudStorageOptions).build();

      // Specify the type of info the inspection will look for.
      // See https://cloud.google.com/dlp/docs/infotypes-reference for complete list of info types
      List<InfoType> infoTypes =
          Stream.of("PHONE_NUMBER", "EMAIL_ADDRESS", "CREDIT_CARD_NUMBER")
              .map(it -> InfoType.newBuilder().setName(it).build())
              .collect(Collectors.toList());

      // Specify how the content should be inspected.
      InspectConfig inspectConfig =
          InspectConfig.newBuilder().addAllInfoTypes(infoTypes).setIncludeQuote(true).build();

      // Specify the action that is triggered when the job completes.
      String pubSubTopic = String.format("projects/%s/topics/%s", projectId, topicId);
      Action.PublishToPubSub publishToPubSub =
          Action.PublishToPubSub.newBuilder().setTopic(pubSubTopic).build();
      Action action = Action.newBuilder().setPubSub(publishToPubSub).build();

      // Configure the long running job we want the service to perform.
      InspectJobConfig inspectJobConfig =
          InspectJobConfig.newBuilder()
              .setStorageConfig(storageConfig)
              .setInspectConfig(inspectConfig)
              .addActions(action)
              .build();

      // Create the request for the job configured above.
      CreateDlpJobRequest createDlpJobRequest =
          CreateDlpJobRequest.newBuilder()
              .setParent(LocationName.of(projectId, "global").toString())
              .setInspectJob(inspectJobConfig)
              .build();

      // Use the client to send the request.
      final DlpJob dlpJob = dlp.createDlpJob(createDlpJobRequest);
      System.out.println("Job created: " + dlpJob.getName());

      // Set up a Pub/Sub subscriber to listen on the job completion status
      final SettableApiFuture<Boolean> done = SettableApiFuture.create();

      ProjectSubscriptionName subscriptionName =
          ProjectSubscriptionName.of(projectId, subscriptionId);

      MessageReceiver messageHandler =
          (PubsubMessage pubsubMessage, AckReplyConsumer ackReplyConsumer) -> {
            handleMessage(dlpJob, done, pubsubMessage, ackReplyConsumer);
          };
      Subscriber subscriber = Subscriber.newBuilder(subscriptionName, messageHandler).build();
      subscriber.startAsync();

      // Wait for job completion semi-synchronously
      // For long jobs, consider using a truly asynchronous execution model such as Cloud Functions
      try {
        done.get(15, TimeUnit.MINUTES);
      } catch (TimeoutException e) {
        System.out.println("Job was not completed after 15 minutes.");
        return;
      } finally {
        subscriber.stopAsync();
        subscriber.awaitTerminated();
      }

      // Get the latest state of the job from the service
      GetDlpJobRequest request = GetDlpJobRequest.newBuilder().setName(dlpJob.getName()).build();
      DlpJob completedJob = dlp.getDlpJob(request);

      // Parse the response and process results.
      System.out.println("Job status: " + completedJob.getState());
      System.out.println("Job name: " + dlpJob.getName());
      InspectDataSourceDetails.Result result = completedJob.getInspectDetails().getResult();
      System.out.println("Findings: ");
      for (InfoTypeStats infoTypeStat : result.getInfoTypeStatsList()) {
        System.out.print("\tInfo type: " + infoTypeStat.getInfoType().getName());
        System.out.println("\tCount: " + infoTypeStat.getCount());
      }
    }
  }

  // handleMessage injects the job and settableFuture into the message reciever interface
  private static void handleMessage(
      DlpJob job,
      SettableApiFuture<Boolean> done,
      PubsubMessage pubsubMessage,
      AckReplyConsumer ackReplyConsumer) {
    String messageAttribute = pubsubMessage.getAttributesMap().get("DlpJobName");
    if (job.getName().equals(messageAttribute)) {
      done.set(true);
      ackReplyConsumer.ack();
    } else {
      ackReplyConsumer.nack();
    }
  }
}

Node.js

Untuk mempelajari cara menginstal dan menggunakan library klien untuk Perlindungan Data Sensitif, lihat library klien Perlindungan Data Sensitif.

Untuk melakukan autentikasi ke Perlindungan Data Sensitif, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, lihat Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

// Import the Google Cloud client libraries
const DLP = require('@google-cloud/dlp');
const {PubSub} = require('@google-cloud/pubsub');

// Instantiates clients
const dlp = new DLP.DlpServiceClient();
const pubsub = new PubSub();

// The project ID to run the API call under
// const projectId = 'my-project';

// The name of the bucket where the file resides.
// const bucketName = 'YOUR-BUCKET';

// The path to the file within the bucket to inspect.
// Can contain wildcards, e.g. "my-image.*"
// const fileName = 'my-image.png';

// The minimum likelihood required before returning a match
// const minLikelihood = 'LIKELIHOOD_UNSPECIFIED';

// The maximum number of findings to report per request (0 = server maximum)
// const maxFindings = 0;

// The infoTypes of information to match
// const infoTypes = [{ name: 'PHONE_NUMBER' }, { name: 'EMAIL_ADDRESS' }, { name: 'CREDIT_CARD_NUMBER' }];

// The customInfoTypes of information to match
// const customInfoTypes = [{ infoType: { name: 'DICT_TYPE' }, dictionary: { wordList: { words: ['foo', 'bar', 'baz']}}},
//   { infoType: { name: 'REGEX_TYPE' }, regex: {pattern: '\\(\\d{3}\\) \\d{3}-\\d{4}'}}];

// The name of the Pub/Sub topic to notify once the job completes
// TODO(developer): create a Pub/Sub topic to use for this
// const topicId = 'MY-PUBSUB-TOPIC'

// The name of the Pub/Sub subscription to use when listening for job
// completion notifications
// TODO(developer): create a Pub/Sub subscription to use for this
// const subscriptionId = 'MY-PUBSUB-SUBSCRIPTION'

async function inspectGCSFile() {
  // Get reference to the file to be inspected
  const storageItem = {
    cloudStorageOptions: {
      fileSet: {url: `gs://${bucketName}/${fileName}`},
    },
  };

  // Construct request for creating an inspect job
  const request = {
    parent: `projects/${projectId}/locations/global`,
    inspectJob: {
      inspectConfig: {
        infoTypes: infoTypes,
        customInfoTypes: customInfoTypes,
        minLikelihood: minLikelihood,
        limits: {
          maxFindingsPerRequest: maxFindings,
        },
      },
      storageConfig: storageItem,
      actions: [
        {
          pubSub: {
            topic: `projects/${projectId}/topics/${topicId}`,
          },
        },
      ],
    },
  };

  // Create a GCS File inspection job and wait for it to complete
  const [topicResponse] = await pubsub.topic(topicId).get();
  // Verify the Pub/Sub topic and listen for job notifications via an
  // existing subscription.
  const subscription = await topicResponse.subscription(subscriptionId);
  const [jobsResponse] = await dlp.createDlpJob(request);
  // Get the job's ID
  const jobName = jobsResponse.name;
  // Watch the Pub/Sub topic until the DLP job finishes
  await new Promise((resolve, reject) => {
    const messageHandler = message => {
      if (message.attributes && message.attributes.DlpJobName === jobName) {
        message.ack();
        subscription.removeListener('message', messageHandler);
        subscription.removeListener('error', errorHandler);
        resolve(jobName);
      } else {
        message.nack();
      }
    };

    const errorHandler = err => {
      subscription.removeListener('message', messageHandler);
      subscription.removeListener('error', errorHandler);
      reject(err);
    };

    subscription.on('message', messageHandler);
    subscription.on('error', errorHandler);
  });

  setTimeout(() => {
    console.log('Waiting for DLP job to fully complete');
  }, 500);
  const [job] = await dlp.getDlpJob({name: jobName});
  console.log(`Job ${job.name} status: ${job.state}`);

  const infoTypeStats = job.inspectDetails.result.infoTypeStats;
  if (infoTypeStats.length > 0) {
    infoTypeStats.forEach(infoTypeStat => {
      console.log(
        `  Found ${infoTypeStat.count} instance(s) of infoType ${infoTypeStat.infoType.name}.`
      );
    });
  } else {
    console.log('No findings.');
  }
}
await inspectGCSFile();

Python

Untuk mempelajari cara menginstal dan menggunakan library klien untuk Perlindungan Data Sensitif, lihat library klien Perlindungan Data Sensitif.

Untuk melakukan autentikasi ke Perlindungan Data Sensitif, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, lihat Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

import threading
from typing import List, Optional

import google.cloud.dlp
import google.cloud.pubsub


def inspect_gcs_file(
    project: str,
    bucket: str,
    filename: str,
    topic_id: str,
    subscription_id: str,
    info_types: List[str],
    custom_dictionaries: List[str] = None,
    custom_regexes: List[str] = None,
    min_likelihood: Optional[str] = None,
    max_findings: Optional[int] = None,
    timeout: int = 300,
) -> None:
    """Uses the Data Loss Prevention API to analyze a file on GCS.
    Args:
        project: The Google Cloud project id to use as a parent resource.
        bucket: The name of the GCS bucket containing the file, as a string.
        filename: The name of the file in the bucket, including the path, as a
            string; e.g. 'images/myfile.png'.
        topic_id: The id of the Cloud Pub/Sub topic to which the API will
            broadcast job completion. The topic must already exist.
        subscription_id: The id of the Cloud Pub/Sub subscription to listen on
            while waiting for job completion. The subscription must already
            exist and be subscribed to the topic.
        info_types: A list of strings representing info types to look for.
            A full list of info type categories can be fetched from the API.
        min_likelihood: A string representing the minimum likelihood threshold
            that constitutes a match. One of: 'LIKELIHOOD_UNSPECIFIED',
            'VERY_UNLIKELY', 'UNLIKELY', 'POSSIBLE', 'LIKELY', 'VERY_LIKELY'.
        max_findings: The maximum number of findings to report; 0 = no maximum.
        timeout: The number of seconds to wait for a response from the API.
    Returns:
        None; the response from the API is printed to the terminal.
    """

    # Instantiate a client.
    dlp = google.cloud.dlp_v2.DlpServiceClient()

    # Prepare info_types by converting the list of strings into a list of
    # dictionaries (protos are also accepted).
    if not info_types:
        info_types = ["FIRST_NAME", "LAST_NAME", "EMAIL_ADDRESS"]
    info_types = [{"name": info_type} for info_type in info_types]

    # Prepare custom_info_types by parsing the dictionary word lists and
    # regex patterns.
    if custom_dictionaries is None:
        custom_dictionaries = []
    dictionaries = [
        {
            "info_type": {"name": f"CUSTOM_DICTIONARY_{i}"},
            "dictionary": {"word_list": {"words": custom_dict.split(",")}},
        }
        for i, custom_dict in enumerate(custom_dictionaries)
    ]
    if custom_regexes is None:
        custom_regexes = []
    regexes = [
        {
            "info_type": {"name": f"CUSTOM_REGEX_{i}"},
            "regex": {"pattern": custom_regex},
        }
        for i, custom_regex in enumerate(custom_regexes)
    ]
    custom_info_types = dictionaries + regexes

    # Construct the configuration dictionary. Keys which are None may
    # optionally be omitted entirely.
    inspect_config = {
        "info_types": info_types,
        "custom_info_types": custom_info_types,
        "min_likelihood": min_likelihood,
        "limits": {"max_findings_per_request": max_findings},
    }

    # Construct a storage_config containing the file's URL.
    url = f"gs://{bucket}/{filename}"
    storage_config = {"cloud_storage_options": {"file_set": {"url": url}}}

    # Convert the project id into full resource ids.
    topic = google.cloud.pubsub.PublisherClient.topic_path(project, topic_id)
    parent = f"projects/{project}/locations/global"

    # Tell the API where to send a notification when the job is complete.
    actions = [{"pub_sub": {"topic": topic}}]

    # Construct the inspect_job, which defines the entire inspect content task.
    inspect_job = {
        "inspect_config": inspect_config,
        "storage_config": storage_config,
        "actions": actions,
    }

    operation = dlp.create_dlp_job(
        request={"parent": parent, "inspect_job": inspect_job}
    )
    print(f"Inspection operation started: {operation.name}")

    # Create a Pub/Sub client and find the subscription. The subscription is
    # expected to already be listening to the topic.
    subscriber = google.cloud.pubsub.SubscriberClient()
    subscription_path = subscriber.subscription_path(project, subscription_id)

    # Set up a callback to acknowledge a message. This closes around an event
    # so that it can signal that it is done and the main thread can continue.
    job_done = threading.Event()

    def callback(message: google.cloud.pubsub_v1.subscriber.message.Message) -> None:
        try:
            if message.attributes["DlpJobName"] == operation.name:
                # This is the message we're looking for, so acknowledge it.
                message.ack()

                # Now that the job is done, fetch the results and print them.
                job = dlp.get_dlp_job(request={"name": operation.name})
                print(f"Job name: {job.name}")
                if job.inspect_details.result.info_type_stats:
                    for finding in job.inspect_details.result.info_type_stats:
                        print(
                            f"Info type: {finding.info_type.name}; Count: {finding.count}"
                        )
                else:
                    print("No findings.")

                # Signal to the main thread that we can exit.
                job_done.set()
            else:
                # This is not the message we're looking for.
                message.drop()
        except Exception as e:
            # Because this is executing in a thread, an exception won't be
            # noted unless we print it manually.
            print(e)
            raise

    subscriber.subscribe(subscription_path, callback=callback)
    finished = job_done.wait(timeout=timeout)
    if not finished:
        print(
            "No event received before the timeout. Please verify that the "
            "subscription provided is subscribed to the topic provided."
        )

Go

Untuk mempelajari cara menginstal dan menggunakan library klien untuk Perlindungan Data Sensitif, lihat library klien Perlindungan Data Sensitif.

Untuk melakukan autentikasi ke Perlindungan Data Sensitif, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, lihat Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

import (
	"context"
	"fmt"
	"io"
	"strings"
	"time"

	dlp "cloud.google.com/go/dlp/apiv2"
	"cloud.google.com/go/dlp/apiv2/dlppb"
	"cloud.google.com/go/pubsub"
)

// inspectGCSFile searches for the given info types in the given file.
func inspectGCSFile(w io.Writer, projectID string, infoTypeNames []string, customDictionaries []string, customRegexes []string, pubSubTopic, pubSubSub, bucketName, fileName string) error {
	// projectID := "my-project-id"
	// infoTypeNames := []string{"US_SOCIAL_SECURITY_NUMBER"}
	// customDictionaries := []string{...}
	// customRegexes := []string{...}
	// pubSubTopic := "dlp-risk-sample-topic"
	// pubSubSub := "dlp-risk-sample-sub"
	// bucketName := "my-bucket"
	// fileName := "my-file.txt"

	ctx := context.Background()
	client, err := dlp.NewClient(ctx)
	if err != nil {
		return fmt.Errorf("dlp.NewClient: %w", err)
	}

	// Convert the info type strings to a list of InfoTypes.
	var infoTypes []*dlppb.InfoType
	for _, it := range infoTypeNames {
		infoTypes = append(infoTypes, &dlppb.InfoType{Name: it})
	}
	// Convert the custom dictionary word lists and custom regexes to a list of CustomInfoTypes.
	var customInfoTypes []*dlppb.CustomInfoType
	for idx, it := range customDictionaries {
		customInfoTypes = append(customInfoTypes, &dlppb.CustomInfoType{
			InfoType: &dlppb.InfoType{
				Name: fmt.Sprintf("CUSTOM_DICTIONARY_%d", idx),
			},
			Type: &dlppb.CustomInfoType_Dictionary_{
				Dictionary: &dlppb.CustomInfoType_Dictionary{
					Source: &dlppb.CustomInfoType_Dictionary_WordList_{
						WordList: &dlppb.CustomInfoType_Dictionary_WordList{
							Words: strings.Split(it, ","),
						},
					},
				},
			},
		})
	}
	for idx, it := range customRegexes {
		customInfoTypes = append(customInfoTypes, &dlppb.CustomInfoType{
			InfoType: &dlppb.InfoType{
				Name: fmt.Sprintf("CUSTOM_REGEX_%d", idx),
			},
			Type: &dlppb.CustomInfoType_Regex_{
				Regex: &dlppb.CustomInfoType_Regex{
					Pattern: it,
				},
			},
		})
	}

	// Create a PubSub Client used to listen for when the inspect job finishes.
	pubsubClient, err := pubsub.NewClient(ctx, projectID)
	if err != nil {
		return fmt.Errorf("pubsub.NewClient: %w", err)
	}
	defer pubsubClient.Close()

	// Create a PubSub subscription we can use to listen for messages.
	// Create the Topic if it doesn't exist.
	t := pubsubClient.Topic(pubSubTopic)
	if exists, err := t.Exists(ctx); err != nil {
		return fmt.Errorf("t.Exists: %w", err)
	} else if !exists {
		if t, err = pubsubClient.CreateTopic(ctx, pubSubTopic); err != nil {
			return fmt.Errorf("CreateTopic: %w", err)
		}
	}

	// Create the Subscription if it doesn't exist.
	s := pubsubClient.Subscription(pubSubSub)
	if exists, err := s.Exists(ctx); err != nil {
		return fmt.Errorf("s.Exists: %w", err)
	} else if !exists {
		if s, err = pubsubClient.CreateSubscription(ctx, pubSubSub, pubsub.SubscriptionConfig{Topic: t}); err != nil {
			return fmt.Errorf("CreateSubscription: %w", err)
		}
	}

	// topic is the PubSub topic string where messages should be sent.
	topic := "projects/" + projectID + "/topics/" + pubSubTopic

	// Create a configured request.
	req := &dlppb.CreateDlpJobRequest{
		Parent: fmt.Sprintf("projects/%s/locations/global", projectID),
		Job: &dlppb.CreateDlpJobRequest_InspectJob{
			InspectJob: &dlppb.InspectJobConfig{
				// StorageConfig describes where to find the data.
				StorageConfig: &dlppb.StorageConfig{
					Type: &dlppb.StorageConfig_CloudStorageOptions{
						CloudStorageOptions: &dlppb.CloudStorageOptions{
							FileSet: &dlppb.CloudStorageOptions_FileSet{
								Url: "gs://" + bucketName + "/" + fileName,
							},
						},
					},
				},
				// InspectConfig describes what fields to look for.
				InspectConfig: &dlppb.InspectConfig{
					InfoTypes:       infoTypes,
					CustomInfoTypes: customInfoTypes,
					MinLikelihood:   dlppb.Likelihood_POSSIBLE,
					Limits: &dlppb.InspectConfig_FindingLimits{
						MaxFindingsPerRequest: 10,
					},
					IncludeQuote: true,
				},
				// Send a message to PubSub using Actions.
				Actions: []*dlppb.Action{
					{
						Action: &dlppb.Action_PubSub{
							PubSub: &dlppb.Action_PublishToPubSub{
								Topic: topic,
							},
						},
					},
				},
			},
		},
	}
	// Create the inspect job.
	j, err := client.CreateDlpJob(ctx, req)
	if err != nil {
		return fmt.Errorf("CreateDlpJob: %w", err)
	}
	fmt.Fprintf(w, "Created job: %v\n", j.GetName())

	// Wait for the inspect job to finish by waiting for a PubSub message.
	// This only waits for 10 minutes. For long jobs, consider using a truly
	// asynchronous execution model such as Cloud Functions.
	ctx, cancel := context.WithTimeout(ctx, 10*time.Minute)
	defer cancel()
	err = s.Receive(ctx, func(ctx context.Context, msg *pubsub.Message) {
		// If this is the wrong job, do not process the result.
		if msg.Attributes["DlpJobName"] != j.GetName() {
			msg.Nack()
			return
		}
		msg.Ack()

		// Stop listening for more messages.
		defer cancel()

		resp, err := client.GetDlpJob(ctx, &dlppb.GetDlpJobRequest{
			Name: j.GetName(),
		})
		if err != nil {
			fmt.Fprintf(w, "Cloud not get job: %v", err)
			return
		}
		r := resp.GetInspectDetails().GetResult().GetInfoTypeStats()
		if len(r) == 0 {
			fmt.Fprintf(w, "No results")
		}
		for _, s := range r {
			fmt.Fprintf(w, "  Found %v instances of infoType %v\n", s.GetCount(), s.GetInfoType().GetName())
		}
	})
	if err != nil {
		return fmt.Errorf("Receive: %w", err)
	}
	return nil
}

PHP

Untuk mempelajari cara menginstal dan menggunakan library klien untuk Perlindungan Data Sensitif, lihat library klien Perlindungan Data Sensitif.

Untuk melakukan autentikasi ke Perlindungan Data Sensitif, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, lihat Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

use Google\Cloud\Dlp\V2\Action;
use Google\Cloud\Dlp\V2\Action\PublishToPubSub;
use Google\Cloud\Dlp\V2\Client\DlpServiceClient;
use Google\Cloud\Dlp\V2\CloudStorageOptions;
use Google\Cloud\Dlp\V2\CloudStorageOptions\FileSet;
use Google\Cloud\Dlp\V2\CreateDlpJobRequest;
use Google\Cloud\Dlp\V2\DlpJob\JobState;
use Google\Cloud\Dlp\V2\GetDlpJobRequest;
use Google\Cloud\Dlp\V2\InfoType;
use Google\Cloud\Dlp\V2\InspectConfig;
use Google\Cloud\Dlp\V2\InspectConfig\FindingLimits;
use Google\Cloud\Dlp\V2\InspectJobConfig;
use Google\Cloud\Dlp\V2\Likelihood;
use Google\Cloud\Dlp\V2\StorageConfig;
use Google\Cloud\PubSub\PubSubClient;

/**
 * Inspect a file stored on Google Cloud Storage , using Pub/Sub for job status notifications.
 *
 * @param string $callingProjectId  The project ID to run the API call under
 * @param string $topicId           The name of the Pub/Sub topic to notify once the job completes
 * @param string $subscriptionId    The name of the Pub/Sub subscription to use when listening for job
 * @param string $bucketId          The name of the bucket where the file resides
 * @param string $file              The path to the file within the bucket to inspect. Can contain wildcards e.g. "my-image.*"
 * @param int    $maxFindings       (Optional) The maximum number of findings to report per request (0 = server maximum)
 */
function inspect_gcs(
    string $callingProjectId,
    string $topicId,
    string $subscriptionId,
    string $bucketId,
    string $file,
    int $maxFindings = 0
): void {
    // Instantiate a client.
    $dlp = new DlpServiceClient();
    $pubsub = new PubSubClient();
    $topic = $pubsub->topic($topicId);

    // The infoTypes of information to match
    $personNameInfoType = (new InfoType())
        ->setName('PERSON_NAME');
    $creditCardNumberInfoType = (new InfoType())
        ->setName('CREDIT_CARD_NUMBER');
    $infoTypes = [$personNameInfoType, $creditCardNumberInfoType];

    // The minimum likelihood required before returning a match
    $minLikelihood = likelihood::LIKELIHOOD_UNSPECIFIED;

    // Specify finding limits
    $limits = (new FindingLimits())
        ->setMaxFindingsPerRequest($maxFindings);

    // Construct items to be inspected
    $fileSet = (new FileSet())
        ->setUrl('gs://' . $bucketId . '/' . $file);

    $cloudStorageOptions = (new CloudStorageOptions())
        ->setFileSet($fileSet);

    $storageConfig = (new StorageConfig())
        ->setCloudStorageOptions($cloudStorageOptions);

    // Construct the inspect config object
    $inspectConfig = (new InspectConfig())
        ->setMinLikelihood($minLikelihood)
        ->setLimits($limits)
        ->setInfoTypes($infoTypes);

    // Construct the action to run when job completes
    $pubSubAction = (new PublishToPubSub())
        ->setTopic($topic->name());

    $action = (new Action())
        ->setPubSub($pubSubAction);

    // Construct inspect job config to run
    $inspectJob = (new InspectJobConfig())
        ->setInspectConfig($inspectConfig)
        ->setStorageConfig($storageConfig)
        ->setActions([$action]);

    // Listen for job notifications via an existing topic/subscription.
    $subscription = $topic->subscription($subscriptionId);

    // Submit request
    $parent = "projects/$callingProjectId/locations/global";
    $createDlpJobRequest = (new CreateDlpJobRequest())
        ->setParent($parent)
        ->setInspectJob($inspectJob);
    $job = $dlp->createDlpJob($createDlpJobRequest);

    // Poll Pub/Sub using exponential backoff until job finishes
    // Consider using an asynchronous execution model such as Cloud Functions
    $attempt = 1;
    $startTime = time();
    do {
        foreach ($subscription->pull() as $message) {
            if (
                isset($message->attributes()['DlpJobName']) &&
                $message->attributes()['DlpJobName'] === $job->getName()
            ) {
                $subscription->acknowledge($message);
                // Get the updated job. Loop to avoid race condition with DLP API.
                do {
                    $getDlpJobRequest = (new GetDlpJobRequest())
                        ->setName($job->getName());
                    $job = $dlp->getDlpJob($getDlpJobRequest);
                } while ($job->getState() == JobState::RUNNING);
                break 2; // break from parent do while
            }
        }
        print('Waiting for job to complete' . PHP_EOL);
        // Exponential backoff with max delay of 60 seconds
        sleep(min(60, pow(2, ++$attempt)));
    } while (time() - $startTime < 600); // 10 minute timeout

    // Print finding counts
    printf('Job %s status: %s' . PHP_EOL, $job->getName(), JobState::name($job->getState()));
    switch ($job->getState()) {
        case JobState::DONE:
            $infoTypeStats = $job->getInspectDetails()->getResult()->getInfoTypeStats();
            if (count($infoTypeStats) === 0) {
                print('No findings.' . PHP_EOL);
            } else {
                foreach ($infoTypeStats as $infoTypeStat) {
                    printf('  Found %s instance(s) of infoType %s' . PHP_EOL, $infoTypeStat->getCount(), $infoTypeStat->getInfoType()->getName());
                }
            }
            break;
        case JobState::FAILED:
            printf('Job %s had errors:' . PHP_EOL, $job->getName());
            $errors = $job->getErrors();
            foreach ($errors as $error) {
                var_dump($error->getDetails());
            }
            break;
        case JobState::PENDING:
            print('Job has not completed. Consider a longer timeout or an asynchronous execution model' . PHP_EOL);
            break;
        default:
            print('Unexpected job state. Most likely, the job is either running or has not yet started.');
    }
}

C#

Untuk mempelajari cara menginstal dan menggunakan library klien untuk Perlindungan Data Sensitif, lihat library klien Perlindungan Data Sensitif.

Untuk melakukan autentikasi ke Perlindungan Data Sensitif, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, lihat Menyiapkan autentikasi untuk lingkungan pengembangan lokal.


using Google.Api.Gax.ResourceNames;
using Google.Cloud.Dlp.V2;
using Google.Cloud.PubSub.V1;
using System;
using System.Collections.Generic;
using System.Threading;
using System.Threading.Tasks;
using static Google.Cloud.Dlp.V2.InspectConfig.Types;

public class InspectGoogleCloudStorage
{
    public static DlpJob InspectGCS(
        string projectId,
        Likelihood minLikelihood,
        int maxFindings,
        bool includeQuote,
        IEnumerable<InfoType> infoTypes,
        IEnumerable<CustomInfoType> customInfoTypes,
        string bucketName,
        string topicId,
        string subscriptionId)
    {
        var inspectJob = new InspectJobConfig
        {
            StorageConfig = new StorageConfig
            {
                CloudStorageOptions = new CloudStorageOptions
                {
                    FileSet = new CloudStorageOptions.Types.FileSet { Url = $"gs://{bucketName}/*.txt" },
                    BytesLimitPerFile = 1073741824
                },
            },
            InspectConfig = new InspectConfig
            {
                InfoTypes = { infoTypes },
                CustomInfoTypes = { customInfoTypes },
                ExcludeInfoTypes = false,
                IncludeQuote = includeQuote,
                Limits = new FindingLimits
                {
                    MaxFindingsPerRequest = maxFindings
                },
                MinLikelihood = minLikelihood
            },
            Actions =
                {
                    new Google.Cloud.Dlp.V2.Action
                    {
                        // Send results to Pub/Sub topic
                        PubSub = new Google.Cloud.Dlp.V2.Action.Types.PublishToPubSub
                        {
                            Topic = topicId,
                        }
                    }
                }
        };

        // Issue Create Dlp Job Request
        var client = DlpServiceClient.Create();
        var request = new CreateDlpJobRequest
        {
            InspectJob = inspectJob,
            Parent = new LocationName(projectId, "global").ToString(),
        };

        // We need created job name
        var dlpJob = client.CreateDlpJob(request);

        // Get a pub/sub subscription and listen for DLP results
        var fireEvent = new ManualResetEventSlim();

        var subscriptionName = new SubscriptionName(projectId, subscriptionId);
        var subscriber = SubscriberClient.CreateAsync(subscriptionName).Result;
        subscriber.StartAsync(
            (pubSubMessage, cancellationToken) =>
            {
                // Given a message that we receive on this subscription, we should either acknowledge or decline it
                if (pubSubMessage.Attributes["DlpJobName"] == dlpJob.Name)
                {
                    fireEvent.Set();
                    return Task.FromResult(SubscriberClient.Reply.Ack);
                }

                return Task.FromResult(SubscriberClient.Reply.Nack);
            });

        // We block here until receiving a signal from a separate thread that is waiting on a message indicating receiving a result of Dlp job
        if (fireEvent.Wait(TimeSpan.FromMinutes(1)))
        {
            // Stop the thread that is listening to messages as a result of StartAsync call earlier
            subscriber.StopAsync(CancellationToken.None).Wait();

            // Now we can inspect full job results
            var job = client.GetDlpJob(new GetDlpJobRequest { DlpJobName = new DlpJobName(projectId, dlpJob.Name) });

            // Inspect Job details
            Console.WriteLine($"Processed bytes: {job.InspectDetails.Result.ProcessedBytes}");
            Console.WriteLine($"Total estimated bytes: {job.InspectDetails.Result.TotalEstimatedBytes}");
            var stats = job.InspectDetails.Result.InfoTypeStats;
            Console.WriteLine("Found stats:");
            foreach (var stat in stats)
            {
                Console.WriteLine($"{stat.InfoType.Name}");
            }

            return job;
        }

        throw new InvalidOperationException("The wait failed on timeout");
    }
}

Memeriksa jenis Datastore

Anda dapat menyiapkan pemeriksaan jenis Datastore menggunakan konsol Google Cloud, DLP API melalui permintaan REST atau RPC, atau secara terprogram dalam beberapa bahasa menggunakan library klien.

Untuk menyiapkan tugas pemindaian jenis Datastore menggunakan Perlindungan Data Sensitif:

Konsol

Untuk menyiapkan tugas pemindaian jenis Datastore menggunakan Perlindungan Data Sensitif:

  1. Di bagian Sensitive Data Protection di konsol Google Cloud, buka halaman Create job or job trigger.

    Buka Membuat tugas atau pemicu tugas

  2. Masukkan informasi tugas Perlindungan Data Sensitif, lalu klik Continue untuk menyelesaikan setiap langkah:

    • Untuk Langkah 1: Pilih data input, masukkan ID untuk project, namespace (opsional), dan jenis yang ingin Anda pindai. Untuk mengetahui detail selengkapnya, lihat Memilih data input.

    • (Opsional) Untuk Langkah 2: Konfigurasikan deteksi, Anda dapat mengonfigurasi jenis data yang akan ditelusuri, yang disebut "infoTypes". Anda dapat memilih dari daftar infoTypes standar, atau Anda dapat memilih template jika ada. Untuk mengetahui detail selengkapnya, lihat Mengonfigurasi deteksi.

    • (Opsional) Untuk Langkah 3: Tambahkan tindakan, pastikan Beri tahu melalui email diaktifkan.

      Aktifkan Save to BigQuery untuk memublikasikan temuan Perlindungan Data Sensitif ke tabel BigQuery. Berikan hal berikut:

      • Untuk Project ID, masukkan project ID tempat hasil Anda disimpan.
      • Untuk Dataset ID, masukkan nama set data yang menyimpan hasil Anda.
      • (Opsional) Untuk Table ID, masukkan nama tabel yang menyimpan hasil Anda. Jika tidak ada ID tabel yang ditentukan, nama default akan ditetapkan ke tabel baru yang mirip dengan berikut ini: dlp_googleapis_[DATE]_1234567890. Jika Anda menentukan tabel yang sudah ada, temuan akan ditambahkan ke tabel tersebut.

      Saat data ditulis ke tabel BigQuery, tagihan dan penggunaan kuota akan diterapkan ke project yang berisi tabel tujuan.

      Untuk informasi selengkapnya tentang tindakan lain yang tercantum, lihat Menambahkan tindakan.

    • (Opsional) Untuk Langkah 4: Jadwalkan, konfigurasikan rentang waktu atau jadwal dengan memilih antara Specify time span atau Create a trigger to run the job on a periodic schedule. Untuk informasi selengkapnya, lihat Jadwal.

  3. Klik Create.

  4. Setelah tugas Perlindungan Data Sensitif selesai, Anda akan dialihkan ke halaman detail tugas dan diberi tahu melalui email. Anda dapat melihat hasil pemeriksaan di halaman detail tugas.

  5. (Opsional) Jika Anda memilih untuk memublikasikan temuan Perlindungan Data Sensitif ke BigQuery, pada halaman Job details, klik View Findings in BigQuery untuk membuka tabel di UI web BigQuery. Anda kemudian dapat membuat kueri pada tabel dan menganalisis temuan Anda. Untuk informasi selengkapnya tentang cara membuat kueri hasil di BigQuery, lihat Membuat Kueri temuan Perlindungan Data Sensitif di BigQuery.

Protokol

Berikut adalah contoh JSON yang dapat dikirim dalam permintaan POST ke endpoint REST DLP API yang ditentukan. Contoh JSON ini menunjukkan cara menggunakan DLP API untuk memeriksa jenis Datastore. Untuk informasi tentang parameter yang disertakan dengan permintaan, lihat "Mengonfigurasi pemeriksaan penyimpanan" nanti dalam topik ini.

Anda dapat mencobanya dengan cepat di API Explorer pada halaman referensi untuk dlpJobs.create:

Buka APIs Explorer

Perlu diingat bahwa permintaan yang berhasil, bahkan di Penjelajah API, akan membuat tugas pemindaian baru. Untuk informasi tentang cara mengontrol tugas pemindaian, lihat Mengambil hasil inspeksi, nanti dalam topik ini. Untuk informasi umum tentang penggunaan JSON untuk mengirim permintaan ke DLP API, lihat panduan memulai JSON.

Input JSON:

POST https://dlp.googleapis.com/v2/projects/[PROJECT-ID]/dlpJobs?key={YOUR_API_KEY}

{
  "inspectJob":{
    "storageConfig":{
      "datastoreOptions":{
        "kind":{
          "name":"Example-Kind"
        },
        "partitionId":{
          "namespaceId":"[NAMESPACE-ID]",
          "projectId":"[PROJECT-ID]"
        }
      }
    },
    "inspectConfig":{
      "infoTypes":[
        {
          "name":"PHONE_NUMBER"
        }
      ],
      "excludeInfoTypes":false,
      "includeQuote":true,
      "minLikelihood":"LIKELY"
    },
    "actions":[
      {
        "saveFindings":{
          "outputConfig":{
            "table":{
              "projectId":"[PROJECT-ID]",
              "datasetId":"[BIGQUERY-DATASET-NAME]",
              "tableId":"[BIGQUERY-TABLE-NAME]"
            }
          }
        }
      }
    ]
  }
}

Java

Untuk mempelajari cara menginstal dan menggunakan library klien untuk Perlindungan Data Sensitif, lihat library klien Perlindungan Data Sensitif.

Untuk melakukan autentikasi ke Perlindungan Data Sensitif, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, lihat Menyiapkan autentikasi untuk lingkungan pengembangan lokal.


import com.google.api.core.SettableApiFuture;
import com.google.cloud.dlp.v2.DlpServiceClient;
import com.google.cloud.pubsub.v1.AckReplyConsumer;
import com.google.cloud.pubsub.v1.MessageReceiver;
import com.google.cloud.pubsub.v1.Subscriber;
import com.google.privacy.dlp.v2.Action;
import com.google.privacy.dlp.v2.CreateDlpJobRequest;
import com.google.privacy.dlp.v2.DatastoreOptions;
import com.google.privacy.dlp.v2.DlpJob;
import com.google.privacy.dlp.v2.GetDlpJobRequest;
import com.google.privacy.dlp.v2.InfoType;
import com.google.privacy.dlp.v2.InfoTypeStats;
import com.google.privacy.dlp.v2.InspectConfig;
import com.google.privacy.dlp.v2.InspectDataSourceDetails;
import com.google.privacy.dlp.v2.InspectJobConfig;
import com.google.privacy.dlp.v2.KindExpression;
import com.google.privacy.dlp.v2.LocationName;
import com.google.privacy.dlp.v2.PartitionId;
import com.google.privacy.dlp.v2.StorageConfig;
import com.google.pubsub.v1.ProjectSubscriptionName;
import com.google.pubsub.v1.PubsubMessage;
import java.io.IOException;
import java.util.List;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;
import java.util.stream.Collectors;
import java.util.stream.Stream;

public class InspectDatastoreEntity {

  public static void main(String[] args) throws Exception {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "your-project-id";
    String datastoreNamespace = "your-datastore-namespace";
    String datastoreKind = "your-datastore-kind";
    String topicId = "your-pubsub-topic-id";
    String subscriptionId = "your-pubsub-subscription-id";
    insepctDatastoreEntity(projectId, datastoreNamespace, datastoreKind, topicId, subscriptionId);
  }

  // Inspects a Datastore Entity.
  public static void insepctDatastoreEntity(
      String projectId,
      String datastoreNamespce,
      String datastoreKind,
      String topicId,
      String subscriptionId)
      throws ExecutionException, InterruptedException, IOException {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (DlpServiceClient dlp = DlpServiceClient.create()) {
      // Specify the Datastore entity to be inspected.
      PartitionId partitionId =
          PartitionId.newBuilder()
              .setProjectId(projectId)
              .setNamespaceId(datastoreNamespce)
              .build();
      KindExpression kindExpression = KindExpression.newBuilder().setName(datastoreKind).build();

      DatastoreOptions datastoreOptions =
          DatastoreOptions.newBuilder().setKind(kindExpression).setPartitionId(partitionId).build();

      StorageConfig storageConfig =
          StorageConfig.newBuilder().setDatastoreOptions(datastoreOptions).build();

      // Specify the type of info the inspection will look for.
      // See https://cloud.google.com/dlp/docs/infotypes-reference for complete list of info types
      List<InfoType> infoTypes =
          Stream.of("PHONE_NUMBER", "EMAIL_ADDRESS", "CREDIT_CARD_NUMBER")
              .map(it -> InfoType.newBuilder().setName(it).build())
              .collect(Collectors.toList());

      // Specify how the content should be inspected.
      InspectConfig inspectConfig =
          InspectConfig.newBuilder().addAllInfoTypes(infoTypes).setIncludeQuote(true).build();

      // Specify the action that is triggered when the job completes.
      String pubSubTopic = String.format("projects/%s/topics/%s", projectId, topicId);
      Action.PublishToPubSub publishToPubSub =
          Action.PublishToPubSub.newBuilder().setTopic(pubSubTopic).build();
      Action action = Action.newBuilder().setPubSub(publishToPubSub).build();

      // Configure the long running job we want the service to perform.
      InspectJobConfig inspectJobConfig =
          InspectJobConfig.newBuilder()
              .setStorageConfig(storageConfig)
              .setInspectConfig(inspectConfig)
              .addActions(action)
              .build();

      // Create the request for the job configured above.
      CreateDlpJobRequest createDlpJobRequest =
          CreateDlpJobRequest.newBuilder()
              .setParent(LocationName.of(projectId, "global").toString())
              .setInspectJob(inspectJobConfig)
              .build();

      // Use the client to send the request.
      final DlpJob dlpJob = dlp.createDlpJob(createDlpJobRequest);
      System.out.println("Job created: " + dlpJob.getName());

      // Set up a Pub/Sub subscriber to listen on the job completion status
      final SettableApiFuture<Boolean> done = SettableApiFuture.create();

      ProjectSubscriptionName subscriptionName =
          ProjectSubscriptionName.of(projectId, subscriptionId);

      MessageReceiver messageHandler =
          (PubsubMessage pubsubMessage, AckReplyConsumer ackReplyConsumer) -> {
            handleMessage(dlpJob, done, pubsubMessage, ackReplyConsumer);
          };
      Subscriber subscriber = Subscriber.newBuilder(subscriptionName, messageHandler).build();
      subscriber.startAsync();

      // Wait for job completion semi-synchronously
      // For long jobs, consider using a truly asynchronous execution model such as Cloud Functions
      try {
        done.get(15, TimeUnit.MINUTES);
      } catch (TimeoutException e) {
        System.out.println("Job was not completed after 15 minutes.");
        return;
      } finally {
        subscriber.stopAsync();
        subscriber.awaitTerminated();
      }

      // Get the latest state of the job from the service
      GetDlpJobRequest request = GetDlpJobRequest.newBuilder().setName(dlpJob.getName()).build();
      DlpJob completedJob = dlp.getDlpJob(request);

      // Parse the response and process results.
      System.out.println("Job status: " + completedJob.getState());
      System.out.println("Job name: " + dlpJob.getName());
      InspectDataSourceDetails.Result result = completedJob.getInspectDetails().getResult();
      System.out.println("Findings: ");
      for (InfoTypeStats infoTypeStat : result.getInfoTypeStatsList()) {
        System.out.print("\tInfo type: " + infoTypeStat.getInfoType().getName());
        System.out.println("\tCount: " + infoTypeStat.getCount());
      }
    }
  }

  // handleMessage injects the job and settableFuture into the message reciever interface
  private static void handleMessage(
      DlpJob job,
      SettableApiFuture<Boolean> done,
      PubsubMessage pubsubMessage,
      AckReplyConsumer ackReplyConsumer) {
    String messageAttribute = pubsubMessage.getAttributesMap().get("DlpJobName");
    if (job.getName().equals(messageAttribute)) {
      done.set(true);
      ackReplyConsumer.ack();
    } else {
      ackReplyConsumer.nack();
    }
  }
}

Node.js

Untuk mempelajari cara menginstal dan menggunakan library klien untuk Perlindungan Data Sensitif, lihat library klien Perlindungan Data Sensitif.

Untuk melakukan autentikasi ke Perlindungan Data Sensitif, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, lihat Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

// Import the Google Cloud client libraries
const DLP = require('@google-cloud/dlp');
const {PubSub} = require('@google-cloud/pubsub');

// Instantiates clients
const dlp = new DLP.DlpServiceClient();
const pubsub = new PubSub();

// The project ID to run the API call under
// const projectId = 'my-project';

// The project ID the target Datastore is stored under
// This may or may not equal the calling project ID
// const dataProjectId = 'my-project';

// (Optional) The ID namespace of the Datastore document to inspect.
// To ignore Datastore namespaces, set this to an empty string ('')
// const namespaceId = '';

// The kind of the Datastore entity to inspect.
// const kind = 'Person';

// The minimum likelihood required before returning a match
// const minLikelihood = 'LIKELIHOOD_UNSPECIFIED';

// The maximum number of findings to report per request (0 = server maximum)
// const maxFindings = 0;

// The infoTypes of information to match
// const infoTypes = [{ name: 'PHONE_NUMBER' }, { name: 'EMAIL_ADDRESS' }, { name: 'CREDIT_CARD_NUMBER' }];

// The customInfoTypes of information to match
// const customInfoTypes = [{ infoType: { name: 'DICT_TYPE' }, dictionary: { wordList: { words: ['foo', 'bar', 'baz']}}},
//   { infoType: { name: 'REGEX_TYPE' }, regex: {pattern: '\\(\\d{3}\\) \\d{3}-\\d{4}'}}];

// The name of the Pub/Sub topic to notify once the job completes
// TODO(developer): create a Pub/Sub topic to use for this
// const topicId = 'MY-PUBSUB-TOPIC'

// The name of the Pub/Sub subscription to use when listening for job
// completion notifications
// TODO(developer): create a Pub/Sub subscription to use for this
// const subscriptionId = 'MY-PUBSUB-SUBSCRIPTION'

async function inspectDatastore() {
  // Construct items to be inspected
  const storageItems = {
    datastoreOptions: {
      partitionId: {
        projectId: dataProjectId,
        namespaceId: namespaceId,
      },
      kind: {
        name: kind,
      },
    },
  };

  // Construct request for creating an inspect job
  const request = {
    parent: `projects/${projectId}/locations/global`,
    inspectJob: {
      inspectConfig: {
        infoTypes: infoTypes,
        customInfoTypes: customInfoTypes,
        minLikelihood: minLikelihood,
        limits: {
          maxFindingsPerRequest: maxFindings,
        },
      },
      storageConfig: storageItems,
      actions: [
        {
          pubSub: {
            topic: `projects/${projectId}/topics/${topicId}`,
          },
        },
      ],
    },
  };
  // Run inspect-job creation request
  const [topicResponse] = await pubsub.topic(topicId).get();
  // Verify the Pub/Sub topic and listen for job notifications via an
  // existing subscription.
  const subscription = await topicResponse.subscription(subscriptionId);
  const [jobsResponse] = await dlp.createDlpJob(request);
  const jobName = jobsResponse.name;
  // Watch the Pub/Sub topic until the DLP job finishes
  await new Promise((resolve, reject) => {
    const messageHandler = message => {
      if (message.attributes && message.attributes.DlpJobName === jobName) {
        message.ack();
        subscription.removeListener('message', messageHandler);
        subscription.removeListener('error', errorHandler);
        resolve(jobName);
      } else {
        message.nack();
      }
    };

    const errorHandler = err => {
      subscription.removeListener('message', messageHandler);
      subscription.removeListener('error', errorHandler);
      reject(err);
    };

    subscription.on('message', messageHandler);
    subscription.on('error', errorHandler);
  });
  // Wait for DLP job to fully complete
  setTimeout(() => {
    console.log('Waiting for DLP job to fully complete');
  }, 500);
  const [job] = await dlp.getDlpJob({name: jobName});
  console.log(`Job ${job.name} status: ${job.state}`);

  const infoTypeStats = job.inspectDetails.result.infoTypeStats;
  if (infoTypeStats.length > 0) {
    infoTypeStats.forEach(infoTypeStat => {
      console.log(
        `  Found ${infoTypeStat.count} instance(s) of infoType ${infoTypeStat.infoType.name}.`
      );
    });
  } else {
    console.log('No findings.');
  }
}
await inspectDatastore();

Python

Untuk mempelajari cara menginstal dan menggunakan library klien untuk Perlindungan Data Sensitif, lihat library klien Perlindungan Data Sensitif.

Untuk melakukan autentikasi ke Perlindungan Data Sensitif, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, lihat Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

import threading
from typing import List, Optional

import google.cloud.dlp
import google.cloud.pubsub


def inspect_datastore(
    project: str,
    datastore_project: str,
    kind: str,
    topic_id: str,
    subscription_id: str,
    info_types: List[str],
    custom_dictionaries: List[str] = None,
    custom_regexes: List[str] = None,
    namespace_id: str = None,
    min_likelihood: Optional[int] = None,
    max_findings: Optional[int] = None,
    timeout: int = 300,
) -> None:
    """Uses the Data Loss Prevention API to analyze Datastore data.
    Args:
        project: The Google Cloud project id to use as a parent resource.
        datastore_project: The Google Cloud project id of the target Datastore.
        kind: The kind of the Datastore entity to inspect, e.g. 'Person'.
        topic_id: The id of the Cloud Pub/Sub topic to which the API will
            broadcast job completion. The topic must already exist.
        subscription_id: The id of the Cloud Pub/Sub subscription to listen on
            while waiting for job completion. The subscription must already
            exist and be subscribed to the topic.
        info_types: A list of strings representing info types to look for.
            A full list of info type categories can be fetched from the API.
        namespace_id: The namespace of the Datastore document, if applicable.
        min_likelihood: A string representing the minimum likelihood threshold
            that constitutes a match. One of: 'LIKELIHOOD_UNSPECIFIED',
            'VERY_UNLIKELY', 'UNLIKELY', 'POSSIBLE', 'LIKELY', 'VERY_LIKELY'.
        max_findings: The maximum number of findings to report; 0 = no maximum.
        timeout: The number of seconds to wait for a response from the API.
    Returns:
        None; the response from the API is printed to the terminal.
    """

    # Instantiate a client.
    dlp = google.cloud.dlp_v2.DlpServiceClient()

    # Prepare info_types by converting the list of strings into a list of
    # dictionaries (protos are also accepted).
    if not info_types:
        info_types = ["FIRST_NAME", "LAST_NAME", "EMAIL_ADDRESS"]
    info_types = [{"name": info_type} for info_type in info_types]

    # Prepare custom_info_types by parsing the dictionary word lists and
    # regex patterns.
    if custom_dictionaries is None:
        custom_dictionaries = []
    dictionaries = [
        {
            "info_type": {"name": f"CUSTOM_DICTIONARY_{i}"},
            "dictionary": {"word_list": {"words": custom_dict.split(",")}},
        }
        for i, custom_dict in enumerate(custom_dictionaries)
    ]
    if custom_regexes is None:
        custom_regexes = []
    regexes = [
        {
            "info_type": {"name": f"CUSTOM_REGEX_{i}"},
            "regex": {"pattern": custom_regex},
        }
        for i, custom_regex in enumerate(custom_regexes)
    ]
    custom_info_types = dictionaries + regexes

    # Construct the configuration dictionary. Keys which are None may
    # optionally be omitted entirely.
    inspect_config = {
        "info_types": info_types,
        "custom_info_types": custom_info_types,
        "min_likelihood": min_likelihood,
        "limits": {"max_findings_per_request": max_findings},
    }

    # Construct a storage_config containing the target Datastore info.
    storage_config = {
        "datastore_options": {
            "partition_id": {
                "project_id": datastore_project,
                "namespace_id": namespace_id,
            },
            "kind": {"name": kind},
        }
    }

    # Convert the project id into full resource ids.
    topic = google.cloud.pubsub.PublisherClient.topic_path(project, topic_id)
    parent = f"projects/{project}/locations/global"

    # Tell the API where to send a notification when the job is complete.
    actions = [{"pub_sub": {"topic": topic}}]

    # Construct the inspect_job, which defines the entire inspect content task.
    inspect_job = {
        "inspect_config": inspect_config,
        "storage_config": storage_config,
        "actions": actions,
    }

    operation = dlp.create_dlp_job(
        request={"parent": parent, "inspect_job": inspect_job}
    )
    print(f"Inspection operation started: {operation.name}")

    # Create a Pub/Sub client and find the subscription. The subscription is
    # expected to already be listening to the topic.
    subscriber = google.cloud.pubsub.SubscriberClient()
    subscription_path = subscriber.subscription_path(project, subscription_id)

    # Set up a callback to acknowledge a message. This closes around an event
    # so that it can signal that it is done and the main thread can continue.
    job_done = threading.Event()

    def callback(message: google.cloud.pubsub_v1.subscriber.message.Message) -> None:
        try:
            if message.attributes["DlpJobName"] == operation.name:
                # This is the message we're looking for, so acknowledge it.
                message.ack()

                # Now that the job is done, fetch the results and print them.
                job = dlp.get_dlp_job(request={"name": operation.name})
                print(f"Job name: {job.name}")
                if job.inspect_details.result.info_type_stats:
                    for finding in job.inspect_details.result.info_type_stats:
                        print(
                            f"Info type: {finding.info_type.name}; Count: {finding.count}"
                        )
                else:
                    print("No findings.")

                # Signal to the main thread that we can exit.
                job_done.set()
            else:
                # This is not the message we're looking for.
                message.drop()
        except Exception as e:
            # Because this is executing in a thread, an exception won't be
            # noted unless we print it manually.
            print(e)
            raise

    # Register the callback and wait on the event.
    subscriber.subscribe(subscription_path, callback=callback)

    finished = job_done.wait(timeout=timeout)
    if not finished:
        print(
            "No event received before the timeout. Please verify that the "
            "subscription provided is subscribed to the topic provided."
        )

Go

Untuk mempelajari cara menginstal dan menggunakan library klien untuk Perlindungan Data Sensitif, lihat library klien Perlindungan Data Sensitif.

Untuk melakukan autentikasi ke Perlindungan Data Sensitif, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, lihat Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

import (
	"context"
	"fmt"
	"io"
	"strings"
	"time"

	dlp "cloud.google.com/go/dlp/apiv2"
	"cloud.google.com/go/dlp/apiv2/dlppb"
	"cloud.google.com/go/pubsub"
)

// inspectDatastore searches for the given info types in the given dataset kind.
func inspectDatastore(w io.Writer, projectID string, infoTypeNames []string, customDictionaries []string, customRegexes []string, pubSubTopic, pubSubSub, dataProject, namespaceID, kind string) error {
	// projectID := "my-project-id"
	// infoTypeNames := []string{"US_SOCIAL_SECURITY_NUMBER"}
	// customDictionaries := []string{...}
	// customRegexes := []string{...}
	// pubSubTopic := "dlp-risk-sample-topic"
	// pubSubSub := "dlp-risk-sample-sub"
	// namespaceID := "namespace-id"
	// kind := "MyKind"

	ctx := context.Background()
	client, err := dlp.NewClient(ctx)
	if err != nil {
		return fmt.Errorf("dlp.NewClient: %w", err)
	}

	// Convert the info type strings to a list of InfoTypes.
	var infoTypes []*dlppb.InfoType
	for _, it := range infoTypeNames {
		infoTypes = append(infoTypes, &dlppb.InfoType{Name: it})
	}
	// Convert the custom dictionary word lists and custom regexes to a list of CustomInfoTypes.
	var customInfoTypes []*dlppb.CustomInfoType
	for idx, it := range customDictionaries {
		customInfoTypes = append(customInfoTypes, &dlppb.CustomInfoType{
			InfoType: &dlppb.InfoType{
				Name: fmt.Sprintf("CUSTOM_DICTIONARY_%d", idx),
			},
			Type: &dlppb.CustomInfoType_Dictionary_{
				Dictionary: &dlppb.CustomInfoType_Dictionary{
					Source: &dlppb.CustomInfoType_Dictionary_WordList_{
						WordList: &dlppb.CustomInfoType_Dictionary_WordList{
							Words: strings.Split(it, ","),
						},
					},
				},
			},
		})
	}
	for idx, it := range customRegexes {
		customInfoTypes = append(customInfoTypes, &dlppb.CustomInfoType{
			InfoType: &dlppb.InfoType{
				Name: fmt.Sprintf("CUSTOM_REGEX_%d", idx),
			},
			Type: &dlppb.CustomInfoType_Regex_{
				Regex: &dlppb.CustomInfoType_Regex{
					Pattern: it,
				},
			},
		})
	}

	// Create a PubSub Client used to listen for when the inspect job finishes.
	pubsubClient, err := pubsub.NewClient(ctx, projectID)
	if err != nil {
		return fmt.Errorf("pubsub.NewClient: %w", err)
	}
	defer pubsubClient.Close()

	// Create a PubSub subscription we can use to listen for messages.
	// Create the Topic if it doesn't exist.
	t := pubsubClient.Topic(pubSubTopic)
	if exists, err := t.Exists(ctx); err != nil {
		return fmt.Errorf("t.Exists: %w", err)
	} else if !exists {
		if t, err = pubsubClient.CreateTopic(ctx, pubSubTopic); err != nil {
			return fmt.Errorf("CreateTopic: %w", err)
		}
	}

	// Create the Subscription if it doesn't exist.
	s := pubsubClient.Subscription(pubSubSub)
	if exists, err := s.Exists(ctx); err != nil {
		return fmt.Errorf("s.Exists: %w", err)
	} else if !exists {
		if s, err = pubsubClient.CreateSubscription(ctx, pubSubSub, pubsub.SubscriptionConfig{Topic: t}); err != nil {
			return fmt.Errorf("CreateSubscription: %w", err)
		}
	}

	// topic is the PubSub topic string where messages should be sent.
	topic := "projects/" + projectID + "/topics/" + pubSubTopic

	// Create a configured request.
	req := &dlppb.CreateDlpJobRequest{
		Parent: fmt.Sprintf("projects/%s/locations/global", projectID),
		Job: &dlppb.CreateDlpJobRequest_InspectJob{
			InspectJob: &dlppb.InspectJobConfig{
				// StorageConfig describes where to find the data.
				StorageConfig: &dlppb.StorageConfig{
					Type: &dlppb.StorageConfig_DatastoreOptions{
						DatastoreOptions: &dlppb.DatastoreOptions{
							PartitionId: &dlppb.PartitionId{
								ProjectId:   dataProject,
								NamespaceId: namespaceID,
							},
							Kind: &dlppb.KindExpression{
								Name: kind,
							},
						},
					},
				},
				// InspectConfig describes what fields to look for.
				InspectConfig: &dlppb.InspectConfig{
					InfoTypes:       infoTypes,
					CustomInfoTypes: customInfoTypes,
					MinLikelihood:   dlppb.Likelihood_POSSIBLE,
					Limits: &dlppb.InspectConfig_FindingLimits{
						MaxFindingsPerRequest: 10,
					},
					IncludeQuote: true,
				},
				// Send a message to PubSub using Actions.
				Actions: []*dlppb.Action{
					{
						Action: &dlppb.Action_PubSub{
							PubSub: &dlppb.Action_PublishToPubSub{
								Topic: topic,
							},
						},
					},
				},
			},
		},
	}
	// Create the inspect job.
	j, err := client.CreateDlpJob(ctx, req)
	if err != nil {
		return fmt.Errorf("CreateDlpJob: %w", err)
	}
	fmt.Fprintf(w, "Created job: %v\n", j.GetName())

	// Wait for the inspect job to finish by waiting for a PubSub message.
	// This only waits for 10 minutes. For long jobs, consider using a truly
	// asynchronous execution model such as Cloud Functions.
	ctx, cancel := context.WithTimeout(ctx, 10*time.Minute)
	defer cancel()
	err = s.Receive(ctx, func(ctx context.Context, msg *pubsub.Message) {
		// If this is the wrong job, do not process the result.
		if msg.Attributes["DlpJobName"] != j.GetName() {
			msg.Nack()
			return
		}
		msg.Ack()

		// Stop listening for more messages.
		defer cancel()

		resp, err := client.GetDlpJob(ctx, &dlppb.GetDlpJobRequest{
			Name: j.GetName(),
		})
		if err != nil {
			fmt.Fprintf(w, "Error getting completed job: %v\n", err)
			return
		}
		r := resp.GetInspectDetails().GetResult().GetInfoTypeStats()
		if len(r) == 0 {
			fmt.Fprintf(w, "No results")
			return
		}
		for _, s := range r {
			fmt.Fprintf(w, "  Found %v instances of infoType %v\n", s.GetCount(), s.GetInfoType().GetName())
		}
	})
	if err != nil {
		return fmt.Errorf("Receive: %w", err)
	}
	return nil
}

PHP

Untuk mempelajari cara menginstal dan menggunakan library klien untuk Perlindungan Data Sensitif, lihat library klien Perlindungan Data Sensitif.

Untuk melakukan autentikasi ke Perlindungan Data Sensitif, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, lihat Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

use Google\Cloud\Dlp\V2\Action;
use Google\Cloud\Dlp\V2\Action\PublishToPubSub;
use Google\Cloud\Dlp\V2\Client\DlpServiceClient;
use Google\Cloud\Dlp\V2\CreateDlpJobRequest;
use Google\Cloud\Dlp\V2\DatastoreOptions;
use Google\Cloud\Dlp\V2\DlpJob\JobState;
use Google\Cloud\Dlp\V2\GetDlpJobRequest;
use Google\Cloud\Dlp\V2\InfoType;
use Google\Cloud\Dlp\V2\InspectConfig;
use Google\Cloud\Dlp\V2\InspectConfig\FindingLimits;
use Google\Cloud\Dlp\V2\InspectJobConfig;
use Google\Cloud\Dlp\V2\KindExpression;
use Google\Cloud\Dlp\V2\Likelihood;
use Google\Cloud\Dlp\V2\PartitionId;
use Google\Cloud\Dlp\V2\StorageConfig;
use Google\Cloud\PubSub\PubSubClient;

/**
 * Inspect Datastore, using Pub/Sub for job status notifications.
 *
 * @param string $callingProjectId  The project ID to run the API call under
 * @param string $dataProjectId     The project ID containing the target Datastore
 * @param string $topicId           The name of the Pub/Sub topic to notify once the job completes
 * @param string $subscriptionId    The name of the Pub/Sub subscription to use when listening for job
 * @param string $kind              The datastore kind to inspect
 * @param string $namespaceId       The ID namespace of the Datastore document to inspect
 * @param int    $maxFindings       (Optional) The maximum number of findings to report per request (0 = server maximum)
 */
function inspect_datastore(
    string $callingProjectId,
    string $dataProjectId,
    string $topicId,
    string $subscriptionId,
    string $kind,
    string $namespaceId,
    int $maxFindings = 0
): void {
    // Instantiate clients
    $dlp = new DlpServiceClient();
    $pubsub = new PubSubClient();
    $topic = $pubsub->topic($topicId);

    // The infoTypes of information to match
    $personNameInfoType = (new InfoType())
        ->setName('PERSON_NAME');
    $phoneNumberInfoType = (new InfoType())
        ->setName('PHONE_NUMBER');
    $infoTypes = [$personNameInfoType, $phoneNumberInfoType];

    // The minimum likelihood required before returning a match
    $minLikelihood = likelihood::LIKELIHOOD_UNSPECIFIED;

    // Specify finding limits
    $limits = (new FindingLimits())
        ->setMaxFindingsPerRequest($maxFindings);

    // Construct items to be inspected
    $partitionId = (new PartitionId())
        ->setProjectId($dataProjectId)
        ->setNamespaceId($namespaceId);

    $kindExpression = (new KindExpression())
        ->setName($kind);

    $datastoreOptions = (new DatastoreOptions())
        ->setPartitionId($partitionId)
        ->setKind($kindExpression);

    // Construct the inspect config object
    $inspectConfig = (new InspectConfig())
        ->setInfoTypes($infoTypes)
        ->setMinLikelihood($minLikelihood)
        ->setLimits($limits);

    // Construct the storage config object
    $storageConfig = (new StorageConfig())
        ->setDatastoreOptions($datastoreOptions);

    // Construct the action to run when job completes
    $pubSubAction = (new PublishToPubSub())
        ->setTopic($topic->name());

    $action = (new Action())
        ->setPubSub($pubSubAction);

    // Construct inspect job config to run
    $inspectJob = (new InspectJobConfig())
        ->setInspectConfig($inspectConfig)
        ->setStorageConfig($storageConfig)
        ->setActions([$action]);

    // Listen for job notifications via an existing topic/subscription.
    $subscription = $topic->subscription($subscriptionId);

    // Submit request
    $parent = "projects/$callingProjectId/locations/global";
    $createDlpJobRequest = (new CreateDlpJobRequest())
        ->setParent($parent)
        ->setInspectJob($inspectJob);
    $job = $dlp->createDlpJob($createDlpJobRequest);

    // Poll Pub/Sub using exponential backoff until job finishes
    // Consider using an asynchronous execution model such as Cloud Functions
    $attempt = 1;
    $startTime = time();
    do {
        foreach ($subscription->pull() as $message) {
            if (
                isset($message->attributes()['DlpJobName']) &&
                $message->attributes()['DlpJobName'] === $job->getName()
            ) {
                $subscription->acknowledge($message);
                // Get the updated job. Loop to avoid race condition with DLP API.
                do {
                    $getDlpJobRequest = (new GetDlpJobRequest())
                        ->setName($job->getName());
                    $job = $dlp->getDlpJob($getDlpJobRequest);
                } while ($job->getState() == JobState::RUNNING);
                break 2; // break from parent do while
            }
        }
        print('Waiting for job to complete' . PHP_EOL);
        // Exponential backoff with max delay of 60 seconds
        sleep(min(60, pow(2, ++$attempt)));
    } while (time() - $startTime < 600); // 10 minute timeout

    // Print finding counts
    printf('Job %s status: %s' . PHP_EOL, $job->getName(), JobState::name($job->getState()));
    switch ($job->getState()) {
        case JobState::DONE:
            $infoTypeStats = $job->getInspectDetails()->getResult()->getInfoTypeStats();
            if (count($infoTypeStats) === 0) {
                print('No findings.' . PHP_EOL);
            } else {
                foreach ($infoTypeStats as $infoTypeStat) {
                    printf('  Found %s instance(s) of infoType %s' . PHP_EOL, $infoTypeStat->getCount(), $infoTypeStat->getInfoType()->getName());
                }
            }
            break;
        case JobState::FAILED:
            printf('Job %s had errors:' . PHP_EOL, $job->getName());
            $errors = $job->getErrors();
            foreach ($errors as $error) {
                var_dump($error->getDetails());
            }
            break;
        case JobState::PENDING:
            print('Job has not completed. Consider a longer timeout or an asynchronous execution model' . PHP_EOL);
            break;
        default:
            print('Unexpected job state.');
    }
}

C#

Untuk mempelajari cara menginstal dan menggunakan library klien untuk Perlindungan Data Sensitif, lihat library klien Perlindungan Data Sensitif.

Untuk melakukan autentikasi ke Perlindungan Data Sensitif, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, lihat Menyiapkan autentikasi untuk lingkungan pengembangan lokal.


using Google.Api.Gax.ResourceNames;
using Google.Cloud.BigQuery.V2;
using Google.Cloud.Dlp.V2;
using Google.Protobuf.WellKnownTypes;
using System;
using System.Collections.Generic;
using System.Threading;
using static Google.Cloud.Dlp.V2.InspectConfig.Types;

public class InspectCloudDataStore
{
    public static object Inspect(
        string projectId,
        Likelihood minLikelihood,
        int maxFindings,
        bool includeQuote,
        string kindName,
        string namespaceId,
        IEnumerable<InfoType> infoTypes,
        IEnumerable<CustomInfoType> customInfoTypes,
        string datasetId,
        string tableId)
    {
        var inspectJob = new InspectJobConfig
        {
            StorageConfig = new StorageConfig
            {
                DatastoreOptions = new DatastoreOptions
                {
                    Kind = new KindExpression { Name = kindName },
                    PartitionId = new PartitionId
                    {
                        NamespaceId = namespaceId,
                        ProjectId = projectId,
                    }
                },
                TimespanConfig = new StorageConfig.Types.TimespanConfig
                {
                    StartTime = Timestamp.FromDateTime(System.DateTime.UtcNow.AddYears(-1)),
                    EndTime = Timestamp.FromDateTime(System.DateTime.UtcNow)
                }
            },

            InspectConfig = new InspectConfig
            {
                InfoTypes = { infoTypes },
                CustomInfoTypes = { customInfoTypes },
                Limits = new FindingLimits
                {
                    MaxFindingsPerRequest = maxFindings
                },
                ExcludeInfoTypes = false,
                IncludeQuote = includeQuote,
                MinLikelihood = minLikelihood
            },
            Actions =
                {
                    new Google.Cloud.Dlp.V2.Action
                    {
                        // Save results in BigQuery Table
                        SaveFindings = new Google.Cloud.Dlp.V2.Action.Types.SaveFindings
                        {
                            OutputConfig = new OutputStorageConfig
                            {
                                Table = new Google.Cloud.Dlp.V2.BigQueryTable
                                {
                                    ProjectId = projectId,
                                    DatasetId = datasetId,
                                    TableId = tableId
                                }
                            }
                        },
                    }
                }
        };

        // Issue Create Dlp Job Request
        var client = DlpServiceClient.Create();
        var request = new CreateDlpJobRequest
        {
            InspectJob = inspectJob,
            Parent = new LocationName(projectId, "global").ToString(),
        };

        // We need created job name
        var dlpJob = client.CreateDlpJob(request);
        var jobName = dlpJob.Name;

        // Make sure the job finishes before inspecting the results.
        // Alternatively, we can inspect results opportunistically, but
        // for testing purposes, we want consistent outcome
        var finishedJob = EnsureJobFinishes(projectId, jobName);
        var bigQueryClient = BigQueryClient.Create(projectId);
        var table = bigQueryClient.GetTable(datasetId, tableId);

        // Return only first page of 10 rows
        Console.WriteLine("DLP v2 Results:");
        var firstPage = table.ListRows(new ListRowsOptions { StartIndex = 0, PageSize = 10 });
        foreach (var item in firstPage)
        {
            Console.WriteLine($"\t {item[""]}");
        }

        return finishedJob;
    }

    private static DlpJob EnsureJobFinishes(string projectId, string jobName)
    {
        var client = DlpServiceClient.Create();
        var request = new GetDlpJobRequest
        {
            DlpJobName = new DlpJobName(projectId, jobName),
        };

        // Simple logic that gives the job 5*30 sec at most to complete - for testing purposes only
        var numOfAttempts = 5;
        do
        {
            var dlpJob = client.GetDlpJob(request);
            numOfAttempts--;
            if (dlpJob.State != DlpJob.Types.JobState.Running)
            {
                return dlpJob;
            }

            Thread.Sleep(TimeSpan.FromSeconds(30));
        } while (numOfAttempts > 0);

        throw new InvalidOperationException("Job did not complete in time");
    }
}

Memeriksa tabel BigQuery

Anda dapat menyiapkan pemeriksaan tabel BigQuery menggunakan Sensitive Data Protection melalui permintaan REST, atau secara terprogram dalam beberapa bahasa menggunakan library klien.

Untuk menyiapkan tugas pemindaian tabel BigQuery menggunakan Perlindungan Data Sensitif:

Konsol

Untuk menyiapkan tugas pemindaian tabel BigQuery menggunakan Perlindungan Data Sensitif:

  1. Di bagian Sensitive Data Protection di konsol Google Cloud, buka halaman Create job or job trigger.

    Buka Membuat tugas atau pemicu tugas

  2. Masukkan informasi tugas Perlindungan Data Sensitif, lalu klik Continue untuk menyelesaikan setiap langkah:

    • Untuk Langkah 1: Pilih data input, beri nama tugas dengan memasukkan nilai di kolom Name. Di Location, pilih BigQuery dari menu Storage type, lalu masukkan informasi untuk tabel yang akan dipindai.

      Bagian Sampling telah dikonfigurasi sebelumnya untuk menjalankan pemindaian sampel terhadap data Anda. Anda dapat menyesuaikan kolom Batasi baris menurut dan Jumlah baris maksimum untuk menghemat resource jika Anda memiliki data dalam jumlah besar. Untuk mengetahui detail selengkapnya, lihat Memilih data input.

    • (Opsional) Jika Anda ingin dapat menautkan setiap temuan ke baris yang berisi temuan tersebut, tetapkan kolom Kolom identifikasi.

      Masukkan nama kolom yang secara unik mengidentifikasi setiap baris dalam tabel. Jika perlu, gunakan notasi titik untuk menentukan kolom bertingkat. Anda dapat menambahkan sebanyak mungkin kolom.

      Anda juga harus mengaktifkan tindakan Save to BigQuery untuk mengekspor temuan ke BigQuery. Saat temuan diekspor ke BigQuery, setiap temuan berisi nilai masing-masing kolom identitas. Untuk informasi selengkapnya, lihat identifyingFields.

    • (Opsional) Untuk Langkah 2: Konfigurasikan deteksi, Anda dapat mengonfigurasi jenis data yang akan ditelusuri, yang disebut "infoTypes". Anda dapat memilih dari daftar infoTypes standar, atau Anda dapat memilih template jika ada. Untuk mengetahui detail selengkapnya, lihat Mengonfigurasi deteksi.

    • (Opsional) Untuk Langkah 3: Tambahkan tindakan, pastikan Beri tahu melalui email diaktifkan.

      Aktifkan Save to BigQuery untuk memublikasikan temuan Perlindungan Data Sensitif ke tabel BigQuery. Berikan hal berikut:

      • Untuk Project ID, masukkan project ID tempat hasil Anda disimpan.
      • Untuk Dataset ID, masukkan nama set data yang menyimpan hasil Anda.
      • (Opsional) Untuk Table ID, masukkan nama tabel yang menyimpan hasil Anda. Jika tidak ada ID tabel yang ditentukan, nama default akan ditetapkan ke tabel baru yang mirip dengan berikut ini: dlp_googleapis_[DATE]_1234567890. Jika Anda menentukan tabel yang sudah ada, temuan akan ditambahkan ke tabel tersebut.

      Saat data ditulis ke tabel BigQuery, tagihan dan penggunaan kuota akan diterapkan ke project yang berisi tabel tujuan.

      Anda juga dapat menyimpan hasil ke Pub/Sub, Security Command Center, dan Katalog Data. Untuk mengetahui detail selengkapnya, lihat Menambahkan tindakan.

    • (Opsional) Untuk Langkah 4: Jadwalkan, agar pemindaian hanya dijalankan satu kali, biarkan menu ditetapkan ke Tidak ada. Untuk menjadwalkan pemindaian agar berjalan secara berkala, klik Buat pemicu untuk menjalankan tugas sesuai jadwal berkala. Untuk mengetahui detail selengkapnya, lihat Jadwal.

  3. Klik Create.

  4. Setelah tugas Perlindungan Data Sensitif selesai, Anda akan dialihkan ke halaman detail tugas dan diberi tahu melalui email. Anda dapat melihat hasil pemeriksaan di halaman detail tugas.

  5. (Opsional) Jika Anda memilih untuk memublikasikan temuan Perlindungan Data Sensitif ke BigQuery, pada halaman Job details, klik View Findings in BigQuery untuk membuka tabel di UI web BigQuery. Anda kemudian dapat membuat kueri pada tabel dan menganalisis temuan Anda. Untuk informasi selengkapnya tentang cara membuat kueri hasil di BigQuery, lihat Membuat Kueri temuan Perlindungan Data Sensitif di BigQuery.

Protokol

Berikut adalah contoh JSON yang dapat dikirim dalam permintaan POST ke endpoint REST DLP API yang ditentukan. Contoh JSON ini menunjukkan cara menggunakan DLP API untuk memeriksa tabel BigQuery. Untuk informasi tentang parameter yang disertakan dengan permintaan, lihat "Mengonfigurasi pemeriksaan penyimpanan" nanti dalam topik ini.

Anda dapat mencobanya dengan cepat di API Explorer pada halaman referensi untuk dlpJobs.create:

Buka APIs Explorer

Perlu diingat bahwa permintaan yang berhasil, bahkan di Penjelajah API, akan membuat tugas pemindaian baru. Untuk informasi tentang cara mengontrol tugas pemindaian, lihat "Mengambil hasil inspeksi", nanti dalam topik ini. Untuk informasi umum tentang penggunaan JSON untuk mengirim permintaan ke DLP API, lihat panduan memulai JSON.

Input JSON:

POST https://dlp.googleapis.com/v2/projects/[PROJECT-ID]/dlpJobs?key={YOUR_API_KEY}

{
  "inspectJob":{
    "storageConfig":{
      "bigQueryOptions":{
        "tableReference":{
          "projectId":"[PROJECT-ID]",
          "datasetId":"[BIGQUERY-DATASET-NAME]",
          "tableId":"[BIGQUERY-TABLE-NAME]"
        },
        "identifyingFields":[
          {
            "name":"id"
          }
        ]
      },
      "timespanConfig":{
        "startTime":"2017-11-13T12:34:29.965633345Z ",
        "endTime":"2018-01-05T04:45:04.240912125Z "
      }
    },
    "inspectConfig":{
      "infoTypes":[
        {
          "name":"PHONE_NUMBER"
        }
      ],
      "excludeInfoTypes":false,
      "includeQuote":true,
      "minLikelihood":"LIKELY"
    },
    "actions":[
      {
        "saveFindings":{
          "outputConfig":{
            "table":{
              "projectId":"[PROJECT-ID]",
              "datasetId":"[BIGQUERY-DATASET-NAME]",
              "tableId":"[BIGQUERY-TABLE-NAME]"
            },
            "outputSchema": "BASIC_COLUMNS"
          }
        }
      }
    ]
  }
}

Java

Untuk mempelajari cara menginstal dan menggunakan library klien untuk Perlindungan Data Sensitif, lihat library klien Perlindungan Data Sensitif.

Untuk melakukan autentikasi ke Perlindungan Data Sensitif, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, lihat Menyiapkan autentikasi untuk lingkungan pengembangan lokal.


import com.google.api.core.SettableApiFuture;
import com.google.cloud.dlp.v2.DlpServiceClient;
import com.google.cloud.pubsub.v1.AckReplyConsumer;
import com.google.cloud.pubsub.v1.MessageReceiver;
import com.google.cloud.pubsub.v1.Subscriber;
import com.google.privacy.dlp.v2.Action;
import com.google.privacy.dlp.v2.BigQueryOptions;
import com.google.privacy.dlp.v2.BigQueryTable;
import com.google.privacy.dlp.v2.CreateDlpJobRequest;
import com.google.privacy.dlp.v2.DlpJob;
import com.google.privacy.dlp.v2.GetDlpJobRequest;
import com.google.privacy.dlp.v2.InfoType;
import com.google.privacy.dlp.v2.InfoTypeStats;
import com.google.privacy.dlp.v2.InspectConfig;
import com.google.privacy.dlp.v2.InspectDataSourceDetails;
import com.google.privacy.dlp.v2.InspectJobConfig;
import com.google.privacy.dlp.v2.LocationName;
import com.google.privacy.dlp.v2.StorageConfig;
import com.google.pubsub.v1.ProjectSubscriptionName;
import com.google.pubsub.v1.PubsubMessage;
import java.io.IOException;
import java.util.List;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;
import java.util.stream.Collectors;
import java.util.stream.Stream;

public class InspectBigQueryTable {

  public static void main(String[] args) throws Exception {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "your-project-id";
    String bigQueryDatasetId = "your-bigquery-dataset-id";
    String bigQueryTableId = "your-bigquery-table-id";
    String topicId = "your-pubsub-topic-id";
    String subscriptionId = "your-pubsub-subscription-id";
    inspectBigQueryTable(projectId, bigQueryDatasetId, bigQueryTableId, topicId, subscriptionId);
  }

  // Inspects a BigQuery Table
  public static void inspectBigQueryTable(
      String projectId,
      String bigQueryDatasetId,
      String bigQueryTableId,
      String topicId,
      String subscriptionId)
      throws ExecutionException, InterruptedException, IOException {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (DlpServiceClient dlp = DlpServiceClient.create()) {
      // Specify the BigQuery table to be inspected.
      BigQueryTable tableReference =
          BigQueryTable.newBuilder()
              .setProjectId(projectId)
              .setDatasetId(bigQueryDatasetId)
              .setTableId(bigQueryTableId)
              .build();

      BigQueryOptions bigQueryOptions =
          BigQueryOptions.newBuilder().setTableReference(tableReference).build();

      StorageConfig storageConfig =
          StorageConfig.newBuilder().setBigQueryOptions(bigQueryOptions).build();

      // Specify the type of info the inspection will look for.
      // See https://cloud.google.com/dlp/docs/infotypes-reference for complete list of info types
      List<InfoType> infoTypes =
          Stream.of("PHONE_NUMBER", "EMAIL_ADDRESS", "CREDIT_CARD_NUMBER")
              .map(it -> InfoType.newBuilder().setName(it).build())
              .collect(Collectors.toList());

      // Specify how the content should be inspected.
      InspectConfig inspectConfig =
          InspectConfig.newBuilder().addAllInfoTypes(infoTypes).setIncludeQuote(true).build();

      // Specify the action that is triggered when the job completes.
      String pubSubTopic = String.format("projects/%s/topics/%s", projectId, topicId);
      Action.PublishToPubSub publishToPubSub =
          Action.PublishToPubSub.newBuilder().setTopic(pubSubTopic).build();
      Action action = Action.newBuilder().setPubSub(publishToPubSub).build();

      // Configure the long running job we want the service to perform.
      InspectJobConfig inspectJobConfig =
          InspectJobConfig.newBuilder()
              .setStorageConfig(storageConfig)
              .setInspectConfig(inspectConfig)
              .addActions(action)
              .build();

      // Create the request for the job configured above.
      CreateDlpJobRequest createDlpJobRequest =
          CreateDlpJobRequest.newBuilder()
              .setParent(LocationName.of(projectId, "global").toString())
              .setInspectJob(inspectJobConfig)
              .build();

      // Use the client to send the request.
      final DlpJob dlpJob = dlp.createDlpJob(createDlpJobRequest);
      System.out.println("Job created: " + dlpJob.getName());

      // Set up a Pub/Sub subscriber to listen on the job completion status
      final SettableApiFuture<Boolean> done = SettableApiFuture.create();

      ProjectSubscriptionName subscriptionName =
          ProjectSubscriptionName.of(projectId, subscriptionId);

      MessageReceiver messageHandler =
          (PubsubMessage pubsubMessage, AckReplyConsumer ackReplyConsumer) -> {
            handleMessage(dlpJob, done, pubsubMessage, ackReplyConsumer);
          };
      Subscriber subscriber = Subscriber.newBuilder(subscriptionName, messageHandler).build();
      subscriber.startAsync();

      // Wait for job completion semi-synchronously
      // For long jobs, consider using a truly asynchronous execution model such as Cloud Functions
      try {
        done.get(15, TimeUnit.MINUTES);
      } catch (TimeoutException e) {
        System.out.println("Job was not completed after 15 minutes.");
        return;
      } finally {
        subscriber.stopAsync();
        subscriber.awaitTerminated();
      }

      // Get the latest state of the job from the service
      GetDlpJobRequest request = GetDlpJobRequest.newBuilder().setName(dlpJob.getName()).build();
      DlpJob completedJob = dlp.getDlpJob(request);

      // Parse the response and process results.
      System.out.println("Job status: " + completedJob.getState());
      System.out.println("Job name: " + dlpJob.getName());
      InspectDataSourceDetails.Result result = completedJob.getInspectDetails().getResult();
      System.out.println("Findings: ");
      for (InfoTypeStats infoTypeStat : result.getInfoTypeStatsList()) {
        System.out.print("\tInfo type: " + infoTypeStat.getInfoType().getName());
        System.out.println("\tCount: " + infoTypeStat.getCount());
      }
    }
  }

  // handleMessage injects the job and settableFuture into the message reciever interface
  private static void handleMessage(
      DlpJob job,
      SettableApiFuture<Boolean> done,
      PubsubMessage pubsubMessage,
      AckReplyConsumer ackReplyConsumer) {
    String messageAttribute = pubsubMessage.getAttributesMap().get("DlpJobName");
    if (job.getName().equals(messageAttribute)) {
      done.set(true);
      ackReplyConsumer.ack();
    } else {
      ackReplyConsumer.nack();
    }
  }
}

Node.js

Untuk mempelajari cara menginstal dan menggunakan library klien untuk Perlindungan Data Sensitif, lihat library klien Perlindungan Data Sensitif.

Untuk melakukan autentikasi ke Perlindungan Data Sensitif, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, lihat Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

// Import the Google Cloud client libraries
const DLP = require('@google-cloud/dlp');
const {PubSub} = require('@google-cloud/pubsub');

// Instantiates clients
const dlp = new DLP.DlpServiceClient();
const pubsub = new PubSub();

// The project ID to run the API call under
// const projectId = 'my-project';

// The project ID the table is stored under
// This may or (for public datasets) may not equal the calling project ID
// const dataProjectId = 'my-project';

// The ID of the dataset to inspect, e.g. 'my_dataset'
// const datasetId = 'my_dataset';

// The ID of the table to inspect, e.g. 'my_table'
// const tableId = 'my_table';

// The minimum likelihood required before returning a match
// const minLikelihood = 'LIKELIHOOD_UNSPECIFIED';

// The maximum number of findings to report per request (0 = server maximum)
// const maxFindings = 0;

// The infoTypes of information to match
// const infoTypes = [{ name: 'PHONE_NUMBER' }, { name: 'EMAIL_ADDRESS' }, { name: 'CREDIT_CARD_NUMBER' }];

// The customInfoTypes of information to match
// const customInfoTypes = [{ infoType: { name: 'DICT_TYPE' }, dictionary: { wordList: { words: ['foo', 'bar', 'baz']}}},
//   { infoType: { name: 'REGEX_TYPE' }, regex: {pattern: '\\(\\d{3}\\) \\d{3}-\\d{4}'}}];

// The name of the Pub/Sub topic to notify once the job completes
// TODO(developer): create a Pub/Sub topic to use for this
// const topicId = 'MY-PUBSUB-TOPIC'

// The name of the Pub/Sub subscription to use when listening for job
// completion notifications
// TODO(developer): create a Pub/Sub subscription to use for this
// const subscriptionId = 'MY-PUBSUB-SUBSCRIPTION'

async function inspectBigquery() {
  // Construct item to be inspected
  const storageItem = {
    bigQueryOptions: {
      tableReference: {
        projectId: dataProjectId,
        datasetId: datasetId,
        tableId: tableId,
      },
    },
  };

  // Construct request for creating an inspect job
  const request = {
    parent: `projects/${projectId}/locations/global`,
    inspectJob: {
      inspectConfig: {
        infoTypes: infoTypes,
        customInfoTypes: customInfoTypes,
        minLikelihood: minLikelihood,
        limits: {
          maxFindingsPerRequest: maxFindings,
        },
      },
      storageConfig: storageItem,
      actions: [
        {
          pubSub: {
            topic: `projects/${projectId}/topics/${topicId}`,
          },
        },
      ],
    },
  };

  // Run inspect-job creation request
  const [topicResponse] = await pubsub.topic(topicId).get();
  // Verify the Pub/Sub topic and listen for job notifications via an
  // existing subscription.
  const subscription = await topicResponse.subscription(subscriptionId);
  const [jobsResponse] = await dlp.createDlpJob(request);
  const jobName = jobsResponse.name;
  // Watch the Pub/Sub topic until the DLP job finishes
  await new Promise((resolve, reject) => {
    const messageHandler = message => {
      if (message.attributes && message.attributes.DlpJobName === jobName) {
        message.ack();
        subscription.removeListener('message', messageHandler);
        subscription.removeListener('error', errorHandler);
        resolve(jobName);
      } else {
        message.nack();
      }
    };

    const errorHandler = err => {
      subscription.removeListener('message', messageHandler);
      subscription.removeListener('error', errorHandler);
      reject(err);
    };

    subscription.on('message', messageHandler);
    subscription.on('error', errorHandler);
  });
  // Wait for DLP job to fully complete
  setTimeout(() => {
    console.log('Waiting for DLP job to fully complete');
  }, 500);
  const [job] = await dlp.getDlpJob({name: jobName});
  console.log(`Job ${job.name} status: ${job.state}`);

  const infoTypeStats = job.inspectDetails.result.infoTypeStats;
  if (infoTypeStats.length > 0) {
    infoTypeStats.forEach(infoTypeStat => {
      console.log(
        `  Found ${infoTypeStat.count} instance(s) of infoType ${infoTypeStat.infoType.name}.`
      );
    });
  } else {
    console.log('No findings.');
  }
}

await inspectBigquery();

Python

Untuk mempelajari cara menginstal dan menggunakan library klien untuk Perlindungan Data Sensitif, lihat library klien Perlindungan Data Sensitif.

Untuk melakukan autentikasi ke Perlindungan Data Sensitif, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, lihat Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

import threading
from typing import List, Optional

import google.cloud.dlp
import google.cloud.pubsub


def inspect_bigquery(
    project: str,
    bigquery_project: str,
    dataset_id: str,
    table_id: str,
    topic_id: str,
    subscription_id: str,
    info_types: List[str],
    custom_dictionaries: List[str] = None,
    custom_regexes: List[str] = None,
    min_likelihood: Optional[int] = None,
    max_findings: Optional[int] = None,
    timeout: int = 500,
) -> None:
    """Uses the Data Loss Prevention API to analyze BigQuery data.
    Args:
        project: The Google Cloud project id to use as a parent resource.
        bigquery_project: The Google Cloud project id of the target table.
        dataset_id: The id of the target BigQuery dataset.
        table_id: The id of the target BigQuery table.
        topic_id: The id of the Cloud Pub/Sub topic to which the API will
            broadcast job completion. The topic must already exist.
        subscription_id: The id of the Cloud Pub/Sub subscription to listen on
            while waiting for job completion. The subscription must already
            exist and be subscribed to the topic.
        info_types: A list of strings representing info types to look for.
            A full list of info type categories can be fetched from the API.
        min_likelihood: A string representing the minimum likelihood threshold
            that constitutes a match. One of: 'LIKELIHOOD_UNSPECIFIED',
            'VERY_UNLIKELY', 'UNLIKELY', 'POSSIBLE', 'LIKELY', 'VERY_LIKELY'.
        max_findings: The maximum number of findings to report; 0 = no maximum.
        timeout: The number of seconds to wait for a response from the API.
    Returns:
        None; the response from the API is printed to the terminal.
    """

    # Instantiate a client.
    dlp = google.cloud.dlp_v2.DlpServiceClient()

    # Prepare info_types by converting the list of strings into a list of
    # dictionaries (protos are also accepted).
    if not info_types:
        info_types = ["FIRST_NAME", "LAST_NAME", "EMAIL_ADDRESS"]
    info_types = [{"name": info_type} for info_type in info_types]

    # Prepare custom_info_types by parsing the dictionary word lists and
    # regex patterns.
    if custom_dictionaries is None:
        custom_dictionaries = []
    dictionaries = [
        {
            "info_type": {"name": f"CUSTOM_DICTIONARY_{i}"},
            "dictionary": {"word_list": {"words": custom_dict.split(",")}},
        }
        for i, custom_dict in enumerate(custom_dictionaries)
    ]
    if custom_regexes is None:
        custom_regexes = []
    regexes = [
        {
            "info_type": {"name": f"CUSTOM_REGEX_{i}"},
            "regex": {"pattern": custom_regex},
        }
        for i, custom_regex in enumerate(custom_regexes)
    ]
    custom_info_types = dictionaries + regexes

    # Construct the configuration dictionary. Keys which are None may
    # optionally be omitted entirely.
    inspect_config = {
        "info_types": info_types,
        "custom_info_types": custom_info_types,
        "min_likelihood": min_likelihood,
        "limits": {"max_findings_per_request": max_findings},
    }

    # Construct a storage_config containing the target Bigquery info.
    storage_config = {
        "big_query_options": {
            "table_reference": {
                "project_id": bigquery_project,
                "dataset_id": dataset_id,
                "table_id": table_id,
            }
        }
    }

    # Convert the project id into full resource ids.
    topic = google.cloud.pubsub.PublisherClient.topic_path(project, topic_id)
    parent = f"projects/{project}/locations/global"

    # Tell the API where to send a notification when the job is complete.
    actions = [{"pub_sub": {"topic": topic}}]

    # Construct the inspect_job, which defines the entire inspect content task.
    inspect_job = {
        "inspect_config": inspect_config,
        "storage_config": storage_config,
        "actions": actions,
    }

    operation = dlp.create_dlp_job(
        request={"parent": parent, "inspect_job": inspect_job}
    )
    print(f"Inspection operation started: {operation.name}")

    # Create a Pub/Sub client and find the subscription. The subscription is
    # expected to already be listening to the topic.
    subscriber = google.cloud.pubsub.SubscriberClient()
    subscription_path = subscriber.subscription_path(project, subscription_id)

    # Set up a callback to acknowledge a message. This closes around an event
    # so that it can signal that it is done and the main thread can continue.
    job_done = threading.Event()

    def callback(message: google.cloud.pubsub_v1.subscriber.message.Message) -> None:
        try:
            if message.attributes["DlpJobName"] == operation.name:
                # This is the message we're looking for, so acknowledge it.
                message.ack()

                # Now that the job is done, fetch the results and print them.
                job = dlp.get_dlp_job(request={"name": operation.name})
                print(f"Job name: {job.name}")
                if job.inspect_details.result.info_type_stats:
                    for finding in job.inspect_details.result.info_type_stats:
                        print(
                            "Info type: {}; Count: {}".format(
                                finding.info_type.name, finding.count
                            )
                        )
                else:
                    print("No findings.")

                # Signal to the main thread that we can exit.
                job_done.set()
            else:
                # This is not the message we're looking for.
                message.drop()
        except Exception as e:
            # Because this is executing in a thread, an exception won't be
            # noted unless we print it manually.
            print(e)
            raise

    # Register the callback and wait on the event.
    subscriber.subscribe(subscription_path, callback=callback)
    finished = job_done.wait(timeout=timeout)
    if not finished:
        print(
            "No event received before the timeout. Please verify that the "
            "subscription provided is subscribed to the topic provided."
        )

Go

Untuk mempelajari cara menginstal dan menggunakan library klien untuk Perlindungan Data Sensitif, lihat library klien Perlindungan Data Sensitif.

Untuk melakukan autentikasi ke Perlindungan Data Sensitif, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, lihat Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

import (
	"context"
	"fmt"
	"io"
	"strings"
	"time"

	dlp "cloud.google.com/go/dlp/apiv2"
	"cloud.google.com/go/dlp/apiv2/dlppb"
	"cloud.google.com/go/pubsub"
)

// inspectBigquery searches for the given info types in the given Bigquery dataset table.
func inspectBigquery(w io.Writer, projectID string, infoTypeNames []string, customDictionaries []string, customRegexes []string, pubSubTopic, pubSubSub, dataProject, datasetID, tableID string) error {
	// projectID := "my-project-id"
	// infoTypeNames := []string{"US_SOCIAL_SECURITY_NUMBER"}
	// customDictionaries := []string{...}
	// customRegexes := []string{...}
	// pubSubTopic := "dlp-risk-sample-topic"
	// pubSubSub := "dlp-risk-sample-sub"
	// dataProject := "my-data-project-ID"
	// datasetID := "my_dataset"
	// tableID := "mytable"

	ctx := context.Background()

	client, err := dlp.NewClient(ctx)
	if err != nil {
		return fmt.Errorf("dlp.NewClient: %w", err)
	}

	// Convert the info type strings to a list of InfoTypes.
	var infoTypes []*dlppb.InfoType
	for _, it := range infoTypeNames {
		infoTypes = append(infoTypes, &dlppb.InfoType{Name: it})
	}
	// Convert the custom dictionary word lists and custom regexes to a list of CustomInfoTypes.
	var customInfoTypes []*dlppb.CustomInfoType
	for idx, it := range customDictionaries {
		customInfoTypes = append(customInfoTypes, &dlppb.CustomInfoType{
			InfoType: &dlppb.InfoType{
				Name: fmt.Sprintf("CUSTOM_DICTIONARY_%d", idx),
			},
			Type: &dlppb.CustomInfoType_Dictionary_{
				Dictionary: &dlppb.CustomInfoType_Dictionary{
					Source: &dlppb.CustomInfoType_Dictionary_WordList_{
						WordList: &dlppb.CustomInfoType_Dictionary_WordList{
							Words: strings.Split(it, ","),
						},
					},
				},
			},
		})
	}
	for idx, it := range customRegexes {
		customInfoTypes = append(customInfoTypes, &dlppb.CustomInfoType{
			InfoType: &dlppb.InfoType{
				Name: fmt.Sprintf("CUSTOM_REGEX_%d", idx),
			},
			Type: &dlppb.CustomInfoType_Regex_{
				Regex: &dlppb.CustomInfoType_Regex{
					Pattern: it,
				},
			},
		})
	}

	// Create a PubSub Client used to listen for when the inspect job finishes.
	pubsubClient, err := pubsub.NewClient(ctx, projectID)
	if err != nil {
		return fmt.Errorf("pubsub.NewClient: %w", err)
	}
	defer pubsubClient.Close()

	// Create a PubSub subscription we can use to listen for messages.
	// Create the Topic if it doesn't exist.
	t := pubsubClient.Topic(pubSubTopic)
	if exists, err := t.Exists(ctx); err != nil {
		return fmt.Errorf("t.Exists: %w", err)
	} else if !exists {
		if t, err = pubsubClient.CreateTopic(ctx, pubSubTopic); err != nil {
			return fmt.Errorf("CreateTopic: %w", err)
		}
	}

	// Create the Subscription if it doesn't exist.
	s := pubsubClient.Subscription(pubSubSub)
	if exists, err := s.Exists(ctx); err != nil {
		return fmt.Errorf("s.Exits: %w", err)
	} else if !exists {
		if s, err = pubsubClient.CreateSubscription(ctx, pubSubSub, pubsub.SubscriptionConfig{Topic: t}); err != nil {
			return fmt.Errorf("CreateSubscription: %w", err)
		}
	}

	// topic is the PubSub topic string where messages should be sent.
	topic := "projects/" + projectID + "/topics/" + pubSubTopic

	// Create a configured request.
	req := &dlppb.CreateDlpJobRequest{
		Parent: fmt.Sprintf("projects/%s/locations/global", projectID),
		Job: &dlppb.CreateDlpJobRequest_InspectJob{
			InspectJob: &dlppb.InspectJobConfig{
				// StorageConfig describes where to find the data.
				StorageConfig: &dlppb.StorageConfig{
					Type: &dlppb.StorageConfig_BigQueryOptions{
						BigQueryOptions: &dlppb.BigQueryOptions{
							TableReference: &dlppb.BigQueryTable{
								ProjectId: dataProject,
								DatasetId: datasetID,
								TableId:   tableID,
							},
						},
					},
				},
				// InspectConfig describes what fields to look for.
				InspectConfig: &dlppb.InspectConfig{
					InfoTypes:       infoTypes,
					CustomInfoTypes: customInfoTypes,
					MinLikelihood:   dlppb.Likelihood_POSSIBLE,
					Limits: &dlppb.InspectConfig_FindingLimits{
						MaxFindingsPerRequest: 10,
					},
					IncludeQuote: true,
				},
				// Send a message to PubSub using Actions.
				Actions: []*dlppb.Action{
					{
						Action: &dlppb.Action_PubSub{
							PubSub: &dlppb.Action_PublishToPubSub{
								Topic: topic,
							},
						},
					},
				},
			},
		},
	}
	// Create the inspect job.
	j, err := client.CreateDlpJob(ctx, req)
	if err != nil {
		return fmt.Errorf("CreateDlpJob: %w", err)
	}
	fmt.Fprintf(w, "Created job: %v\n", j.GetName())

	// Wait for the inspect job to finish by waiting for a PubSub message.
	// This only waits for 10 minutes. For long jobs, consider using a truly
	// asynchronous execution model such as Cloud Functions.
	ctx, cancel := context.WithTimeout(ctx, 10*time.Minute)
	defer cancel()
	err = s.Receive(ctx, func(ctx context.Context, msg *pubsub.Message) {
		// If this is the wrong job, do not process the result.
		if msg.Attributes["DlpJobName"] != j.GetName() {
			msg.Nack()
			return
		}
		msg.Ack()

		// Stop listening for more messages.
		defer cancel()

		resp, err := client.GetDlpJob(ctx, &dlppb.GetDlpJobRequest{
			Name: j.GetName(),
		})
		if err != nil {
			fmt.Fprintf(w, "Error getting completed job: %v\n", err)
			return
		}
		r := resp.GetInspectDetails().GetResult().GetInfoTypeStats()
		if len(r) == 0 {
			fmt.Fprintf(w, "No results")
			return
		}
		for _, s := range r {
			fmt.Fprintf(w, "  Found %v instances of infoType %v\n", s.GetCount(), s.GetInfoType().GetName())
		}
	})
	if err != nil {
		return fmt.Errorf("Receive: %w", err)
	}
	return nil
}

PHP

Untuk mempelajari cara menginstal dan menggunakan library klien untuk Perlindungan Data Sensitif, lihat library klien Perlindungan Data Sensitif.

Untuk melakukan autentikasi ke Perlindungan Data Sensitif, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, lihat Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

use Google\Cloud\Dlp\V2\Action;
use Google\Cloud\Dlp\V2\Action\PublishToPubSub;
use Google\Cloud\Dlp\V2\BigQueryOptions;
use Google\Cloud\Dlp\V2\BigQueryTable;
use Google\Cloud\Dlp\V2\Client\DlpServiceClient;
use Google\Cloud\Dlp\V2\CreateDlpJobRequest;
use Google\Cloud\Dlp\V2\DlpJob\JobState;
use Google\Cloud\Dlp\V2\GetDlpJobRequest;
use Google\Cloud\Dlp\V2\InfoType;
use Google\Cloud\Dlp\V2\InspectConfig;
use Google\Cloud\Dlp\V2\InspectConfig\FindingLimits;
use Google\Cloud\Dlp\V2\InspectJobConfig;
use Google\Cloud\Dlp\V2\Likelihood;
use Google\Cloud\Dlp\V2\StorageConfig;
use Google\Cloud\PubSub\PubSubClient;

/**
 * Inspect a BigQuery table , using Pub/Sub for job status notifications.
 *
 * @param string $callingProjectId  The project ID to run the API call under
 * @param string $dataProjectId     The project ID containing the target Datastore
 * @param string $topicId           The name of the Pub/Sub topic to notify once the job completes
 * @param string $subscriptionId    The name of the Pub/Sub subscription to use when listening for job
 * @param string $datasetId         The ID of the dataset to inspect
 * @param string $tableId           The ID of the table to inspect
 * @param int    $maxFindings       (Optional) The maximum number of findings to report per request (0 = server maximum)
 */
function inspect_bigquery(
    string $callingProjectId,
    string $dataProjectId,
    string $topicId,
    string $subscriptionId,
    string $datasetId,
    string $tableId,
    int $maxFindings = 0
): void {
    // Instantiate a client.
    $dlp = new DlpServiceClient();
    $pubsub = new PubSubClient();
    $topic = $pubsub->topic($topicId);

    // The infoTypes of information to match
    $personNameInfoType = (new InfoType())
        ->setName('PERSON_NAME');
    $creditCardNumberInfoType = (new InfoType())
        ->setName('CREDIT_CARD_NUMBER');
    $infoTypes = [$personNameInfoType, $creditCardNumberInfoType];

    // The minimum likelihood required before returning a match
    $minLikelihood = likelihood::LIKELIHOOD_UNSPECIFIED;

    // Specify finding limits
    $limits = (new FindingLimits())
        ->setMaxFindingsPerRequest($maxFindings);

    // Construct items to be inspected
    $bigqueryTable = (new BigQueryTable())
        ->setProjectId($dataProjectId)
        ->setDatasetId($datasetId)
        ->setTableId($tableId);

    $bigQueryOptions = (new BigQueryOptions())
        ->setTableReference($bigqueryTable);

    $storageConfig = (new StorageConfig())
        ->setBigQueryOptions($bigQueryOptions);

    // Construct the inspect config object
    $inspectConfig = (new InspectConfig())
        ->setMinLikelihood($minLikelihood)
        ->setLimits($limits)
        ->setInfoTypes($infoTypes);

    // Construct the action to run when job completes
    $pubSubAction = (new PublishToPubSub())
        ->setTopic($topic->name());

    $action = (new Action())
        ->setPubSub($pubSubAction);

    // Construct inspect job config to run
    $inspectJob = (new InspectJobConfig())
        ->setInspectConfig($inspectConfig)
        ->setStorageConfig($storageConfig)
        ->setActions([$action]);

    // Listen for job notifications via an existing topic/subscription.
    $subscription = $topic->subscription($subscriptionId);

    // Submit request
    $parent = "projects/$callingProjectId/locations/global";
    $createDlpJobRequest = (new CreateDlpJobRequest())
        ->setParent($parent)
        ->setInspectJob($inspectJob);
    $job = $dlp->createDlpJob($createDlpJobRequest);

    // Poll Pub/Sub using exponential backoff until job finishes
    // Consider using an asynchronous execution model such as Cloud Functions
    $attempt = 1;
    $startTime = time();
    do {
        foreach ($subscription->pull() as $message) {
            if (isset($message->attributes()['DlpJobName']) &&
                $message->attributes()['DlpJobName'] === $job->getName()) {
                $subscription->acknowledge($message);
                // Get the updated job. Loop to avoid race condition with DLP API.
                do {
                    $getDlpJobRequest = (new GetDlpJobRequest())
                        ->setName($job->getName());
                    $job = $dlp->getDlpJob($getDlpJobRequest);
                } while ($job->getState() == JobState::RUNNING);
                break 2; // break from parent do while
            }
        }
        print('Waiting for job to complete' . PHP_EOL);
        // Exponential backoff with max delay of 60 seconds
        sleep(min(60, pow(2, ++$attempt)));
    } while (time() - $startTime < 600); // 10 minute timeout

    // Print finding counts
    printf('Job %s status: %s' . PHP_EOL, $job->getName(), JobState::name($job->getState()));
    switch ($job->getState()) {
        case JobState::DONE:
            $infoTypeStats = $job->getInspectDetails()->getResult()->getInfoTypeStats();
            if (count($infoTypeStats) === 0) {
                print('No findings.' . PHP_EOL);
            } else {
                foreach ($infoTypeStats as $infoTypeStat) {
                    printf(
                        '  Found %s instance(s) of infoType %s' . PHP_EOL,
                        $infoTypeStat->getCount(),
                        $infoTypeStat->getInfoType()->getName()
                    );
                }
            }
            break;
        case JobState::FAILED:
            printf('Job %s had errors:' . PHP_EOL, $job->getName());
            $errors = $job->getErrors();
            foreach ($errors as $error) {
                var_dump($error->getDetails());
            }
            break;
        case JobState::PENDING:
            print('Job has not completed. Consider a longer timeout or an asynchronous execution model' . PHP_EOL);
            break;
        default:
            print('Unexpected job state. Most likely, the job is either running or has not yet started.');
    }
}

C#

Untuk mempelajari cara menginstal dan menggunakan library klien untuk Perlindungan Data Sensitif, lihat library klien Perlindungan Data Sensitif.

Untuk melakukan autentikasi ke Perlindungan Data Sensitif, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, lihat Menyiapkan autentikasi untuk lingkungan pengembangan lokal.


using Google.Api.Gax.ResourceNames;
using Google.Cloud.BigQuery.V2;
using Google.Cloud.Dlp.V2;
using Google.Protobuf.WellKnownTypes;
using System;
using System.Collections.Generic;
using System.Threading;
using static Google.Cloud.Dlp.V2.InspectConfig.Types;

public class InspectBigQuery
{
    public static object Inspect(
        string projectId,
        Likelihood minLikelihood,
        int maxFindings,
        bool includeQuote,
        IEnumerable<FieldId> identifyingFields,
        IEnumerable<InfoType> infoTypes,
        IEnumerable<CustomInfoType> customInfoTypes,
        string datasetId,
        string tableId)
    {
        var inspectJob = new InspectJobConfig
        {
            StorageConfig = new StorageConfig
            {
                BigQueryOptions = new BigQueryOptions
                {
                    TableReference = new Google.Cloud.Dlp.V2.BigQueryTable
                    {
                        ProjectId = projectId,
                        DatasetId = datasetId,
                        TableId = tableId,
                    },
                    IdentifyingFields =
                        {
                            identifyingFields
                        }
                },

                TimespanConfig = new StorageConfig.Types.TimespanConfig
                {
                    StartTime = Timestamp.FromDateTime(System.DateTime.UtcNow.AddYears(-1)),
                    EndTime = Timestamp.FromDateTime(System.DateTime.UtcNow)
                }
            },

            InspectConfig = new InspectConfig
            {
                InfoTypes = { infoTypes },
                CustomInfoTypes = { customInfoTypes },
                Limits = new FindingLimits
                {
                    MaxFindingsPerRequest = maxFindings
                },
                ExcludeInfoTypes = false,
                IncludeQuote = includeQuote,
                MinLikelihood = minLikelihood
            },
            Actions =
                {
                    new Google.Cloud.Dlp.V2.Action
                    {
                        // Save results in BigQuery Table
                        SaveFindings = new Google.Cloud.Dlp.V2.Action.Types.SaveFindings
                        {
                            OutputConfig = new OutputStorageConfig
                            {
                                Table = new Google.Cloud.Dlp.V2.BigQueryTable
                                {
                                    ProjectId = projectId,
                                    DatasetId = datasetId,
                                    TableId = tableId
                                }
                            }
                        },
                    }
                }
        };

        // Issue Create Dlp Job Request
        var client = DlpServiceClient.Create();
        var request = new CreateDlpJobRequest
        {
            InspectJob = inspectJob,
            Parent = new LocationName(projectId, "global").ToString(),
        };

        // We need created job name
        var dlpJob = client.CreateDlpJob(request);
        var jobName = dlpJob.Name;

        // Make sure the job finishes before inspecting the results.
        // Alternatively, we can inspect results opportunistically, but
        // for testing purposes, we want consistent outcome
        var finishedJob = EnsureJobFinishes(projectId, jobName);
        var bigQueryClient = BigQueryClient.Create(projectId);
        var table = bigQueryClient.GetTable(datasetId, tableId);

        // Return only first page of 10 rows
        Console.WriteLine("DLP v2 Results:");
        var firstPage = table.ListRows(new ListRowsOptions { StartIndex = 0, PageSize = 10 });
        foreach (var item in firstPage)
        {
            Console.WriteLine($"\t {item[""]}");
        }

        return finishedJob;
    }

    private static DlpJob EnsureJobFinishes(string projectId, string jobName)
    {
        var client = DlpServiceClient.Create();
        var request = new GetDlpJobRequest
        {
            DlpJobName = new DlpJobName(projectId, jobName),
        };

        // Simple logic that gives the job 5*30 sec at most to complete - for testing purposes only
        var numOfAttempts = 5;
        do
        {
            var dlpJob = client.GetDlpJob(request);
            numOfAttempts--;
            if (dlpJob.State != DlpJob.Types.JobState.Running)
            {
                return dlpJob;
            }

            Thread.Sleep(TimeSpan.FromSeconds(30));
        } while (numOfAttempts > 0);

        throw new InvalidOperationException("Job did not complete in time");
    }
}

Mengonfigurasi pemeriksaan penyimpanan

Untuk memeriksa lokasi Cloud Storage, jenis Datastore, atau tabel BigQuery, Anda mengirim permintaan ke metode projects.dlpJobs.create DLP API yang berisi setidaknya lokasi data yang akan dipindai dan apa yang akan dipindai. Selain parameter yang diperlukan tersebut, Anda juga dapat menentukan tempat untuk menulis hasil pemindaian, nilai minimum ukuran dan kemungkinan, dan lainnya. Permintaan yang berhasil akan menghasilkan pembuatan instance objek DlpJob, yang dibahas dalam "Mengambil hasil pemeriksaan".

Opsi konfigurasi yang tersedia diringkas di sini:

  • Objek InspectJobConfig: Berisi informasi konfigurasi untuk tugas inspeksi. Perhatikan bahwa objek InspectJobConfig juga digunakan oleh objek JobTriggers untuk menjadwalkan pembuatan DlpJob. Objek ini mencakup:

    • Objek StorageConfig: Wajib ada. Berisi detail tentang repositori penyimpanan yang akan dipindai:

      • Salah satu dari opsi berikut harus disertakan dalam objek StorageConfig, bergantung pada jenis repositori penyimpanan yang dipindai:

      • Objek CloudStorageOptions: Berisi informasi tentang bucket Cloud Storage yang akan dipindai.

      • Objek DatastoreOptions: Berisi informasi tentang set data Datastore yang akan dipindai.

      • Objek BigQueryOptions: Berisi informasi tentang tabel BigQuery (dan, secara opsional, kolom identifikasi) yang akan dipindai. Objek ini juga memungkinkan pengambilan sampel hasil. Untuk mengetahui informasi selengkapnya, lihat Mengaktifkan sampling hasil di bawah.

      • Objek TimespanConfig: Opsional. Menentukan rentang waktu item yang akan disertakan dalam pindaian.

    • Objek InspectConfig: Wajib ada. Menentukan apa yang akan dipindai, seperti nilai infoTypes dan likelihood.

      • Objek InfoType: Wajib ada. Satu atau beberapa nilai infoType yang akan dipindai.
      • Enumerasi Likelihood: Opsional. Jika ditetapkan, Perlindungan Data Sensitif hanya akan menampilkan temuan yang sama dengan atau di atas nilai minimum kemungkinan ini. Jika enum ini dihilangkan, nilai defaultnya adalah POSSIBLE.
      • Objek FindingLimits: Opsional. Jika ditetapkan, objek ini memungkinkan Anda menentukan batas untuk jumlah temuan yang ditampilkan.
      • Parameter includeQuote: Opsional. Default-nya adalah false. Jika ditetapkan ke true, setiap temuan akan menyertakan kutipan kontekstual dari data yang memicunya.
      • Parameter excludeInfoTypes: Opsional. Default-nya adalah false. Jika disetel ke true, hasil pemindaian akan mengecualikan informasi jenis untuk temuan.
      • Objek CustomInfoType: Satu atau beberapa infoType kustom buatan pengguna. Untuk mengetahui informasi selengkapnya tentang cara membuat infoTypes kustom, lihat Membuat detector infoType kustom.
    • String inspectTemplateName: Opsional. Menentukan template yang akan digunakan untuk mengisi nilai default dalam objek InspectConfig. Jika Anda telah menentukan InspectConfig, nilai template akan digabungkan.

    • Objek Action: Opsional. Satu atau beberapa tindakan yang akan dijalankan setelah tugas selesai. Setiap tindakan dieksekusi sesuai urutan yang tercantum. Di sinilah Anda menentukan tempat untuk menulis hasil, atau apakah akan memublikasikan notifikasi ke topik Pub/Sub.

  • jobId: Opsional. ID untuk tugas yang ditampilkan oleh Sensitive Data Protection. Jika jobId dihilangkan atau kosong, sistem akan membuat ID untuk tugas. Jika ditentukan, tugas akan diberi nilai ID ini. ID tugas harus unik, dan dapat berisi huruf besar dan kecil, angka, serta tanda hubung; yaitu, ID harus cocok dengan ekspresi reguler berikut: [a-zA-Z\\d-]+.

Membatasi jumlah konten yang diperiksa

Jika Anda memindai tabel BigQuery atau bucket Cloud Storage, Perlindungan Data Sensitif menyertakan cara untuk memindai subkumpulan set data. Hal ini akan memberikan sampel hasil pemindaian tanpa mengakibatkan potensi biaya pemindaian seluruh set data.

Bagian berikut berisi informasi tentang cara membatasi ukuran pemindaian Cloud Storage dan pemindaian BigQuery.

Membatasi pemindaian Cloud Storage

Anda dapat mengaktifkan sampling di Cloud Storage dengan membatasi jumlah data yang dipindai. Anda dapat menginstruksikan DLP API untuk hanya memindai file dengan ukuran tertentu, hanya jenis file tertentu, dan hanya persentase tertentu dari jumlah total file dalam kumpulan file input. Untuk melakukannya, tentukan kolom opsional berikut dalam CloudStorageOptions:

  • bytesLimitPerFile: Menetapkan jumlah byte maksimum yang akan dipindai dari file. Jika ukuran file yang dipindai lebih besar dari nilai ini, sisa byte akan dihilangkan. Menetapkan kolom ini tidak memengaruhi jenis file tertentu. Untuk mengetahui informasi selengkapnya, lihat Batas byte yang dipindai per file.
  • fileTypes[]: Mencantumkan FileTypes yang akan disertakan dalam pemindaian. Ini dapat ditetapkan ke satu atau beberapa jenis yang dihitung berikut.
  • filesLimitPercent: Membatasi jumlah file yang akan dipindai ke persentase input yang ditentukan FileSet. Menentukan 0 atau 100 di sini menunjukkan bahwa tidak ada batas.
  • sampleMethod: Cara mengambil sampel byte jika tidak semua byte dipindai. Menentukan nilai ini hanya bermakna jika digunakan bersama dengan bytesLimitPerFile. Jika tidak ditentukan, pemindaian akan dimulai dari atas. Kolom ini dapat ditetapkan ke salah satu dari dua nilai:
    • TOP: Pemindaian dimulai dari atas.
    • RANDOM_START: Untuk setiap file yang lebih besar dari ukuran yang ditentukan dalam bytesLimitPerFile, pilih offset secara acak untuk mulai memindai. Byte yang dipindai bersifat berurutan.

Contoh berikut menunjukkan penggunaan DLP API untuk memindai subset 90% bucket Cloud Storage untuk nama orang. Pemindaian dimulai dari lokasi acak dalam set data, dan hanya menyertakan file teks di bawah 200 byte.

C#

Untuk mempelajari cara menginstal dan menggunakan library klien untuk Perlindungan Data Sensitif, lihat library klien Perlindungan Data Sensitif.

Untuk melakukan autentikasi ke Perlindungan Data Sensitif, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, lihat Menyiapkan autentikasi untuk lingkungan pengembangan lokal.


using Google.Api.Gax.ResourceNames;
using Google.Cloud.Dlp.V2;
using Google.Cloud.PubSub.V1;
using System.Collections.Generic;
using System.Threading;
using System.Threading.Tasks;

public class InspectStorageWithSampling
{
    public static async Task<DlpJob> InspectAsync(
        string projectId,
        string gcsUri,
        string topicId,
        string subId,
        Likelihood minLikelihood = Likelihood.Possible,
        IEnumerable<InfoType> infoTypes = null)
    {

        // Instantiate the dlp client.
        var dlp = DlpServiceClient.Create();

        // Construct Storage config by specifying the GCS file to be inspected
        // and sample method.
        var storageConfig = new StorageConfig
        {
            CloudStorageOptions = new CloudStorageOptions
            {
                FileSet = new CloudStorageOptions.Types.FileSet
                {
                    Url = gcsUri
                },
                BytesLimitPerFile = 200,
                FileTypes = { new FileType[] { FileType.Csv } },
                FilesLimitPercent = 90,
                SampleMethod = CloudStorageOptions.Types.SampleMethod.RandomStart
            }
        };

        // Construct the Inspect Config and specify the type of info the inspection
        // will look for.
        var inspectConfig = new InspectConfig
        {
            InfoTypes =
            {
                infoTypes ?? new InfoType[] { new InfoType { Name = "PERSON_NAME" } }
            },
            IncludeQuote = true,
            MinLikelihood = minLikelihood
        };

        // Construct the pubsub action.
        var actions = new Action[]
        {
            new Action
            {
                PubSub = new Action.Types.PublishToPubSub
                {
                    Topic = $"projects/{projectId}/topics/{topicId}"
                }
            }
        };

        // Construct the inspect job config using above created objects.
        var inspectJob = new InspectJobConfig
        {
            StorageConfig = storageConfig,
            InspectConfig = inspectConfig,
            Actions = { actions }
        };

        // Issue Create Dlp Job Request
        var request = new CreateDlpJobRequest
        {
            InspectJob = inspectJob,
            ParentAsLocationName = new LocationName(projectId, "global"),
        };

        // We keep the name of the job that we just created.
        var dlpJob = dlp.CreateDlpJob(request);
        var jobName = dlpJob.Name;

        // Listen to pub/sub for the job
        var subscriptionName = new SubscriptionName(projectId, subId);
        var subscriber = await SubscriberClient.CreateAsync(
            subscriptionName);

        await subscriber.StartAsync((PubsubMessage message, CancellationToken cancel) =>
        {
            if (message.Attributes["DlpJobName"] == jobName)
            {
                subscriber.StopAsync(cancel);
                return Task.FromResult(SubscriberClient.Reply.Ack);
            }
            else
            {
                return Task.FromResult(SubscriberClient.Reply.Nack);
            }
        });

        // Get the latest state of the job from the service
        var resultJob = dlp.GetDlpJob(new GetDlpJobRequest
        {
            DlpJobName = DlpJobName.Parse(jobName)
        });

        // Parse the response and process results.
        System.Console.WriteLine($"Job status: {resultJob.State}");
        System.Console.WriteLine($"Job Name: {resultJob.Name}");

        var result = resultJob.InspectDetails.Result;
        foreach (var infoType in result.InfoTypeStats)
        {
            System.Console.WriteLine($"Info Type: {infoType.InfoType.Name}");
            System.Console.WriteLine($"Count: {infoType.Count}");
        }
        return resultJob;
    }
}

Go

Untuk mempelajari cara menginstal dan menggunakan library klien untuk Perlindungan Data Sensitif, lihat library klien Perlindungan Data Sensitif.

Untuk melakukan autentikasi ke Perlindungan Data Sensitif, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, lihat Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

import (
	"context"
	"fmt"
	"io"
	"time"

	dlp "cloud.google.com/go/dlp/apiv2"
	"cloud.google.com/go/dlp/apiv2/dlppb"
	"cloud.google.com/go/pubsub"
)

// inspectGcsFileWithSampling inspects a storage with sampling
func inspectGcsFileWithSampling(w io.Writer, projectID, gcsUri, topicID, subscriptionId string) error {
	// projectId := "your-project-id"
	// gcsUri := "gs://" + "your-bucket-name" + "/path/to/your/file.txt"
	// topicID := "your-pubsub-topic-id"
	// subscriptionId := "your-pubsub-subscription-id"

	ctx := context.Background()

	// Initialize a client once and reuse it to send multiple requests. Clients
	// are safe to use across goroutines. When the client is no longer needed,
	// call the Close method to cleanup its resources.
	client, err := dlp.NewClient(ctx)
	if err != nil {
		return err
	}
	// Closing the client safely cleans up background resources.
	defer client.Close()

	// Specify the GCS file to be inspected and sampling configuration
	var cloudStorageOptions = &dlppb.CloudStorageOptions{
		FileSet: &dlppb.CloudStorageOptions_FileSet{
			Url: gcsUri,
		},
		BytesLimitPerFile: int64(200),
		FileTypes: []dlppb.FileType{
			dlppb.FileType_TEXT_FILE,
		},
		FilesLimitPercent: int32(90),
		SampleMethod:      dlppb.CloudStorageOptions_RANDOM_START,
	}

	var storageConfig = &dlppb.StorageConfig{
		Type: &dlppb.StorageConfig_CloudStorageOptions{
			CloudStorageOptions: cloudStorageOptions,
		},
	}

	// Specify the type of info the inspection will look for.
	// See https://cloud.google.com/dlp/docs/infotypes-reference for complete list of info types
	// Specify how the content should be inspected.
	var inspectConfig = &dlppb.InspectConfig{
		InfoTypes: []*dlppb.InfoType{
			{Name: "PERSON_NAME"},
		},
		ExcludeInfoTypes: true,
		IncludeQuote:     true,
		MinLikelihood:    dlppb.Likelihood_POSSIBLE,
	}

	// Create a PubSub Client used to listen for when the inspect job finishes.
	pubsubClient, err := pubsub.NewClient(ctx, projectID)
	if err != nil {
		return err
	}
	defer pubsubClient.Close()

	// Create a PubSub subscription we can use to listen for messages.
	// Create the Topic if it doesn't exist.
	t := pubsubClient.Topic(topicID)
	if exists, err := t.Exists(ctx); err != nil {
		return err
	} else if !exists {
		if t, err = pubsubClient.CreateTopic(ctx, topicID); err != nil {
			return err
		}
	}

	// Create the Subscription if it doesn't exist.
	s := pubsubClient.Subscription(subscriptionId)
	if exists, err := s.Exists(ctx); err != nil {
		return err
	} else if !exists {
		if s, err = pubsubClient.CreateSubscription(ctx, subscriptionId, pubsub.SubscriptionConfig{Topic: t}); err != nil {
			return err
		}
	}

	// topic is the PubSub topic string where messages should be sent.
	topic := "projects/" + projectID + "/topics/" + topicID

	var action = &dlppb.Action{
		Action: &dlppb.Action_PubSub{
			PubSub: &dlppb.Action_PublishToPubSub{
				Topic: topic,
			},
		},
	}

	// Configure the long running job we want the service to perform.
	var inspectJobConfig = &dlppb.InspectJobConfig{
		StorageConfig: storageConfig,
		InspectConfig: inspectConfig,
		Actions: []*dlppb.Action{
			action,
		},
	}

	// Create the request for the job configured above.
	req := &dlppb.CreateDlpJobRequest{
		Parent: fmt.Sprintf("projects/%s/locations/global", projectID),
		Job: &dlppb.CreateDlpJobRequest_InspectJob{
			InspectJob: inspectJobConfig,
		},
	}

	// Use the client to send the request.
	j, err := client.CreateDlpJob(ctx, req)
	if err != nil {
		return err
	}
	fmt.Fprintf(w, "Job Created: %v", j.GetName())

	// Wait for the inspect job to finish by waiting for a PubSub message.
	// This only waits for 10 minutes. For long jobs, consider using a truly
	// asynchronous execution model such as Cloud Functions.
	ctx, cancel := context.WithTimeout(ctx, 10*time.Minute)
	defer cancel()
	err = s.Receive(ctx, func(ctx context.Context, msg *pubsub.Message) {
		// If this is the wrong job, do not process the result.
		if msg.Attributes["DlpJobName"] != j.GetName() {
			msg.Nack()
			return
		}
		msg.Ack()

		// Stop listening for more messages.
		defer cancel()

		resp, err := client.GetDlpJob(ctx, &dlppb.GetDlpJobRequest{
			Name: j.GetName(),
		})
		if err != nil {
			fmt.Fprintf(w, "Error getting completed job: %v\n", err)
			return
		}
		r := resp.GetInspectDetails().GetResult().GetInfoTypeStats()
		if len(r) == 0 {
			fmt.Fprintf(w, "No results")
			return
		}
		for _, s := range r {
			fmt.Fprintf(w, "\nFound %v instances of infoType %v\n", s.GetCount(), s.GetInfoType().GetName())
		}
	})
	if err != nil {
		return err
	}
	return nil

}

Java

Untuk mempelajari cara menginstal dan menggunakan library klien untuk Perlindungan Data Sensitif, lihat library klien Perlindungan Data Sensitif.

Untuk melakukan autentikasi ke Perlindungan Data Sensitif, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, lihat Menyiapkan autentikasi untuk lingkungan pengembangan lokal.


import com.google.api.core.SettableApiFuture;
import com.google.cloud.dlp.v2.DlpServiceClient;
import com.google.cloud.pubsub.v1.AckReplyConsumer;
import com.google.cloud.pubsub.v1.MessageReceiver;
import com.google.cloud.pubsub.v1.Subscriber;
import com.google.privacy.dlp.v2.Action;
import com.google.privacy.dlp.v2.CloudStorageOptions;
import com.google.privacy.dlp.v2.CloudStorageOptions.FileSet;
import com.google.privacy.dlp.v2.CloudStorageOptions.SampleMethod;
import com.google.privacy.dlp.v2.CreateDlpJobRequest;
import com.google.privacy.dlp.v2.DlpJob;
import com.google.privacy.dlp.v2.FileType;
import com.google.privacy.dlp.v2.GetDlpJobRequest;
import com.google.privacy.dlp.v2.InfoType;
import com.google.privacy.dlp.v2.InfoTypeStats;
import com.google.privacy.dlp.v2.InspectConfig;
import com.google.privacy.dlp.v2.InspectDataSourceDetails;
import com.google.privacy.dlp.v2.InspectJobConfig;
import com.google.privacy.dlp.v2.Likelihood;
import com.google.privacy.dlp.v2.LocationName;
import com.google.privacy.dlp.v2.StorageConfig;
import com.google.pubsub.v1.ProjectSubscriptionName;
import com.google.pubsub.v1.PubsubMessage;
import java.io.IOException;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;

public class InspectGcsFileWithSampling {

  public static void main(String[] args) throws Exception {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "your-project-id";
    String gcsUri = "gs://" + "your-bucket-name" + "/path/to/your/file.txt";
    String topicId = "your-pubsub-topic-id";
    String subscriptionId = "your-pubsub-subscription-id";
    inspectGcsFileWithSampling(projectId, gcsUri, topicId, subscriptionId);
  }

  // Inspects a file in a Google Cloud Storage Bucket.
  public static void inspectGcsFileWithSampling(
      String projectId, String gcsUri, String topicId, String subscriptionId)
      throws ExecutionException, InterruptedException, IOException {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (DlpServiceClient dlp = DlpServiceClient.create()) {
      // Specify the GCS file to be inspected and sampling configuration
      CloudStorageOptions cloudStorageOptions =
          CloudStorageOptions.newBuilder()
              .setFileSet(FileSet.newBuilder().setUrl(gcsUri))
              .setBytesLimitPerFile(200)
              .addFileTypes(FileType.TEXT_FILE)
              .setFilesLimitPercent(90)
              .setSampleMethod(SampleMethod.RANDOM_START)
              .build();

      StorageConfig storageConfig =
          StorageConfig.newBuilder().setCloudStorageOptions(cloudStorageOptions).build();

      // Specify the type of info the inspection will look for.
      // See https://cloud.google.com/dlp/docs/infotypes-reference for complete list of info types
      InfoType infoType = InfoType.newBuilder().setName("PERSON_NAME").build();

      // Specify how the content should be inspected.
      InspectConfig inspectConfig =
          InspectConfig.newBuilder()
              .addInfoTypes(infoType)
              .setExcludeInfoTypes(true)
              .setIncludeQuote(true)
              .setMinLikelihood(Likelihood.POSSIBLE)
              .build();

      // Specify the action that is triggered when the job completes.
      String pubSubTopic = String.format("projects/%s/topics/%s", projectId, topicId);
      Action.PublishToPubSub publishToPubSub =
          Action.PublishToPubSub.newBuilder().setTopic(pubSubTopic).build();
      Action action = Action.newBuilder().setPubSub(publishToPubSub).build();

      // Configure the long running job we want the service to perform.
      InspectJobConfig inspectJobConfig =
          InspectJobConfig.newBuilder()
              .setStorageConfig(storageConfig)
              .setInspectConfig(inspectConfig)
              .addActions(action)
              .build();

      // Create the request for the job configured above.
      CreateDlpJobRequest createDlpJobRequest =
          CreateDlpJobRequest.newBuilder()
              .setParent(LocationName.of(projectId, "global").toString())
              .setInspectJob(inspectJobConfig)
              .build();

      // Use the client to send the request.
      final DlpJob dlpJob = dlp.createDlpJob(createDlpJobRequest);
      System.out.println("Job created: " + dlpJob.getName());

      // Set up a Pub/Sub subscriber to listen on the job completion status
      final SettableApiFuture<Boolean> done = SettableApiFuture.create();

      ProjectSubscriptionName subscriptionName =
          ProjectSubscriptionName.of(projectId, subscriptionId);

      MessageReceiver messageHandler =
          (PubsubMessage pubsubMessage, AckReplyConsumer ackReplyConsumer) -> {
            handleMessage(dlpJob, done, pubsubMessage, ackReplyConsumer);
          };
      Subscriber subscriber = Subscriber.newBuilder(subscriptionName, messageHandler).build();
      subscriber.startAsync();

      // Wait for job completion semi-synchronously
      // For long jobs, consider using a truly asynchronous execution model such as Cloud Functions
      try {
        done.get(15, TimeUnit.MINUTES);
      } catch (TimeoutException e) {
        System.out.println("Job was not completed after 15 minutes.");
        return;
      } finally {
        subscriber.stopAsync();
        subscriber.awaitTerminated();
      }

      // Get the latest state of the job from the service
      GetDlpJobRequest request = GetDlpJobRequest.newBuilder().setName(dlpJob.getName()).build();
      DlpJob completedJob = dlp.getDlpJob(request);

      // Parse the response and process results.
      System.out.println("Job status: " + completedJob.getState());
      System.out.println("Job name: " + dlpJob.getName());
      InspectDataSourceDetails.Result result = completedJob.getInspectDetails().getResult();
      System.out.println("Findings: ");
      for (InfoTypeStats infoTypeStat : result.getInfoTypeStatsList()) {
        System.out.print("\tInfo type: " + infoTypeStat.getInfoType().getName());
        System.out.println("\tCount: " + infoTypeStat.getCount());
      }
    }
  }

  // handleMessage injects the job and settableFuture into the message reciever interface
  private static void handleMessage(
      DlpJob job,
      SettableApiFuture<Boolean> done,
      PubsubMessage pubsubMessage,
      AckReplyConsumer ackReplyConsumer) {
    String messageAttribute = pubsubMessage.getAttributesMap().get("DlpJobName");
    if (job.getName().equals(messageAttribute)) {
      done.set(true);
      ackReplyConsumer.ack();
    } else {
      ackReplyConsumer.nack();
    }
  }
}

Node.js

Untuk mempelajari cara menginstal dan menggunakan library klien untuk Perlindungan Data Sensitif, lihat library klien Perlindungan Data Sensitif.

Untuk melakukan autentikasi ke Perlindungan Data Sensitif, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, lihat Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

// Import the Google Cloud client libraries
const DLP = require('@google-cloud/dlp');
const {PubSub} = require('@google-cloud/pubsub');

// Instantiates clients
const dlp = new DLP.DlpServiceClient();
const pubsub = new PubSub();

// The project ID to run the API call under
// const projectId = 'my-project';

// The gcs file path
// const gcsUri = 'gs://" + "your-bucket-name" + "/path/to/your/file.txt';

// Specify the type of info the inspection will look for.
// See https://cloud.google.com/dlp/docs/infotypes-reference for complete list of info types
// const infoTypes = [{ name: 'PERSON_NAME' }];

// The name of the Pub/Sub topic to notify once the job completes
// TODO(developer): create a Pub/Sub topic to use for this
// const topicId = 'MY-PUBSUB-TOPIC'

// The name of the Pub/Sub subscription to use when listening for job
// completion notifications
// TODO(developer): create a Pub/Sub subscription to use for this
// const subscriptionId = 'MY-PUBSUB-SUBSCRIPTION'

// DLP Job max time (in milliseconds)
const DLP_JOB_WAIT_TIME = 15 * 1000 * 60;

async function inspectGcsFileSampling() {
  // Specify the GCS file to be inspected and sampling configuration
  const storageItemConfig = {
    cloudStorageOptions: {
      fileSet: {url: gcsUri},
      bytesLimitPerFile: 200,
      filesLimitPercent: 90,
      fileTypes: [DLP.protos.google.privacy.dlp.v2.FileType.TEXT_FILE],
      sampleMethod:
        DLP.protos.google.privacy.dlp.v2.CloudStorageOptions.SampleMethod
          .RANDOM_START,
    },
  };

  // Specify how the content should be inspected.
  const inspectConfig = {
    infoTypes: infoTypes,
    minLikelihood: DLP.protos.google.privacy.dlp.v2.Likelihood.POSSIBLE,
    includeQuote: true,
    excludeInfoTypes: true,
  };

  // Specify the action that is triggered when the job completes.
  const actions = [
    {
      pubSub: {
        topic: `projects/${projectId}/topics/${topicId}`,
      },
    },
  ];

  // Create the request for the job configured above.
  const request = {
    parent: `projects/${projectId}/locations/global`,
    inspectJob: {
      inspectConfig: inspectConfig,
      storageConfig: storageItemConfig,
      actions: actions,
    },
  };

  // Use the client to send the request.
  const [topicResponse] = await pubsub.topic(topicId).get();

  // Verify the Pub/Sub topic and listen for job notifications via an
  // existing subscription.
  const subscription = await topicResponse.subscription(subscriptionId);

  const [jobsResponse] = await dlp.createDlpJob(request);
  const jobName = jobsResponse.name;
  // Watch the Pub/Sub topic until the DLP job finishes
  await new Promise((resolve, reject) => {
    // Set up the timeout
    const timer = setTimeout(() => {
      reject(new Error('Timeout'));
    }, DLP_JOB_WAIT_TIME);

    const messageHandler = message => {
      if (message.attributes && message.attributes.DlpJobName === jobName) {
        message.ack();
        subscription.removeListener('message', messageHandler);
        subscription.removeListener('error', errorHandler);
        clearTimeout(timer);
        resolve(jobName);
      } else {
        message.nack();
      }
    };

    const errorHandler = err => {
      subscription.removeListener('message', messageHandler);
      subscription.removeListener('error', errorHandler);
      clearTimeout(timer);
      reject(err);
    };

    subscription.on('message', messageHandler);
    subscription.on('error', errorHandler);
  });
  const [job] = await dlp.getDlpJob({name: jobName});
  console.log(`Job ${job.name} status: ${job.state}`);

  const infoTypeStats = job.inspectDetails.result.infoTypeStats;
  if (infoTypeStats.length > 0) {
    infoTypeStats.forEach(infoTypeStat => {
      console.log(
        `  Found ${infoTypeStat.count} instance(s) of infoType ${infoTypeStat.infoType.name}.`
      );
    });
  } else {
    console.log('No findings.');
  }
}

await inspectGcsFileSampling();

PHP

Untuk mempelajari cara menginstal dan menggunakan library klien untuk Perlindungan Data Sensitif, lihat library klien Perlindungan Data Sensitif.

Untuk melakukan autentikasi ke Perlindungan Data Sensitif, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, lihat Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

use Google\Cloud\Dlp\V2\DlpServiceClient;
use Google\Cloud\Dlp\V2\InfoType;
use Google\Cloud\Dlp\V2\InspectConfig;
use Google\Cloud\Dlp\V2\StorageConfig;
use Google\Cloud\Dlp\V2\DlpJob\JobState;
use Google\Cloud\Dlp\V2\Action;
use Google\Cloud\Dlp\V2\Action\PublishToPubSub;
use Google\Cloud\Dlp\V2\BigQueryOptions\SampleMethod;
use Google\Cloud\Dlp\V2\CloudStorageOptions;
use Google\Cloud\Dlp\V2\CloudStorageOptions\FileSet;
use Google\Cloud\Dlp\V2\InspectJobConfig;
use Google\Cloud\PubSub\PubSubClient;

/**
 * Inspect storage with sampling.
 * The following examples demonstrate using the Cloud DLP API to scan a 90% subset of a
 * Cloud Storage bucket for person names. The scan starts from a random location in the dataset
 * and only includes text files under 200 bytes.
 *
 * @param string $callingProjectId  The project ID to run the API call under.
 * @param string $gcsUri            Google Cloud Storage file url.
 * @param string $topicId           The ID of the Pub/Sub topic to notify once the job completes.
 * @param string $subscriptionId    The ID of the Pub/Sub subscription to use when listening for job.
 */
function inspect_gcs_with_sampling(
    // TODO(developer): Replace sample parameters before running the code.
    string $callingProjectId,
    string $gcsUri = 'gs://GOOGLE_STORAGE_BUCKET_NAME/dlp_sample.csv',
    string $topicId = 'dlp-pubsub-topic',
    string $subscriptionId = 'dlp_subcription'
): void {
    // Instantiate a client.
    $dlp = new DlpServiceClient();
    $pubsub = new PubSubClient();
    $topic = $pubsub->topic($topicId);

    // Construct the items to be inspected.
    $cloudStorageOptions = (new CloudStorageOptions())
        ->setFileSet((new FileSet())
            ->setUrl($gcsUri))
        ->setBytesLimitPerFile(200)
        ->setFilesLimitPercent(90)
        ->setSampleMethod(SampleMethod::RANDOM_START);

    $storageConfig = (new StorageConfig())
        ->setCloudStorageOptions($cloudStorageOptions);

    // Specify the type of info the inspection will look for.
    $phoneNumberInfoType = (new InfoType())
        ->setName('PHONE_NUMBER');
    $emailAddressInfoType = (new InfoType())
        ->setName('EMAIL_ADDRESS');
    $cardNumberInfoType = (new InfoType())
        ->setName('CREDIT_CARD_NUMBER');
    $infoTypes = [$phoneNumberInfoType, $emailAddressInfoType, $cardNumberInfoType];

    // Specify how the content should be inspected.
    $inspectConfig = (new InspectConfig())
        ->setInfoTypes($infoTypes)
        ->setIncludeQuote(true);

    // Construct the action to run when job completes.
    $action = (new Action())
        ->setPubSub((new PublishToPubSub())
            ->setTopic($topic->name()));

    // Construct inspect job config to run.
    $inspectJob = (new InspectJobConfig())
        ->setInspectConfig($inspectConfig)
        ->setStorageConfig($storageConfig)
        ->setActions([$action]);

    // Listen for job notifications via an existing topic/subscription.
    $subscription = $topic->subscription($subscriptionId);

    // Submit request.
    $parent = "projects/$callingProjectId/locations/global";
    $job = $dlp->createDlpJob($parent, [
        'inspectJob' => $inspectJob
    ]);

    // Poll Pub/Sub using exponential backoff until job finishes.
    // Consider using an asynchronous execution model such as Cloud Functions.
    $attempt = 1;
    $startTime = time();
    do {
        foreach ($subscription->pull() as $message) {
            if (
                isset($message->attributes()['DlpJobName']) &&
                $message->attributes()['DlpJobName'] === $job->getName()
            ) {
                $subscription->acknowledge($message);
                // Get the updated job. Loop to avoid race condition with DLP API.
                do {
                    $job = $dlp->getDlpJob($job->getName());
                } while ($job->getState() == JobState::RUNNING);
                break 2; // break from parent do while.
            }
        }
        printf('Waiting for job to complete' . PHP_EOL);
        // Exponential backoff with max delay of 60 seconds.
        sleep(min(60, pow(2, ++$attempt)));
    } while (time() - $startTime < 600); // 10 minute timeout.

    // Print finding counts.
    printf('Job %s status: %s' . PHP_EOL, $job->getName(), JobState::name($job->getState()));
    switch ($job->getState()) {
        case JobState::DONE:
            $infoTypeStats = $job->getInspectDetails()->getResult()->getInfoTypeStats();
            if (count($infoTypeStats) === 0) {
                printf('No findings.' . PHP_EOL);
            } else {
                foreach ($infoTypeStats as $infoTypeStat) {
                    printf(
                        '  Found %s instance(s) of infoType %s' . PHP_EOL,
                        $infoTypeStat->getCount(),
                        $infoTypeStat->getInfoType()->getName()
                    );
                }
            }
            break;
        case JobState::FAILED:
            printf('Job %s had errors:' . PHP_EOL, $job->getName());
            $errors = $job->getErrors();
            foreach ($errors as $error) {
                var_dump($error->getDetails());
            }
            break;
        case JobState::PENDING:
            printf('Job has not completed. Consider a longer timeout or an asynchronous execution model' . PHP_EOL);
            break;
        default:
            printf('Unexpected job state. Most likely, the job is either running or has not yet started.');
    }
}

Python

Untuk mempelajari cara menginstal dan menggunakan library klien untuk Perlindungan Data Sensitif, lihat library klien Perlindungan Data Sensitif.

Untuk melakukan autentikasi ke Perlindungan Data Sensitif, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, lihat Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

import threading
from typing import List

import google.cloud.dlp
import google.cloud.pubsub


def inspect_gcs_with_sampling(
    project: str,
    bucket: str,
    topic_id: str,
    subscription_id: str,
    info_types: List[str] = None,
    file_types: List[str] = None,
    min_likelihood: str = None,
    max_findings: int = None,
    timeout: int = 300,
) -> None:
    """Uses the Data Loss Prevention API to analyze files in GCS by
    limiting the amount of data to be scanned.
    Args:
        project: The Google Cloud project id to use as a parent resource.
        bucket: The name of the GCS bucket containing the file, as a string.
        topic_id: The id of the Cloud Pub/Sub topic to which the API will
            broadcast job completion. The topic must already exist.
        subscription_id: The id of the Cloud Pub/Sub subscription to listen on
            while waiting for job completion. The subscription must already
            exist and be subscribed to the topic.
        info_types: A list of strings representing infoTypes to look for.
            A full list of info type categories can be fetched from the API.
        file_types: Type of files in gcs bucket where the inspection would happen.
        min_likelihood: A string representing the minimum likelihood threshold
            that constitutes a match. One of: 'LIKELIHOOD_UNSPECIFIED',
            'VERY_UNLIKELY', 'UNLIKELY', 'POSSIBLE', 'LIKELY', 'VERY_LIKELY'.
        max_findings: The maximum number of findings to report; 0 = no maximum.
        timeout: The number of seconds to wait for a response from the API.
    """

    # Instantiate a client.
    dlp = google.cloud.dlp_v2.DlpServiceClient()

    # Prepare info_types by converting the list of strings into a list of
    # dictionaries.
    if not info_types:
        info_types = ["FIRST_NAME", "LAST_NAME", "EMAIL_ADDRESS"]
    info_types = [{"name": info_type} for info_type in info_types]

    # Specify how the content should be inspected. Keys which are None may
    # optionally be omitted entirely.
    inspect_config = {
        "info_types": info_types,
        "exclude_info_types": True,
        "include_quote": True,
        "min_likelihood": min_likelihood,
        "limits": {"max_findings_per_request": max_findings},
    }

    # Setting default file types as CSV files
    if not file_types:
        file_types = ["CSV"]

    # Construct a cloud_storage_options dictionary with the bucket's URL.
    url = f"gs://{bucket}/*"
    storage_config = {
        "cloud_storage_options": {
            "file_set": {"url": url},
            "bytes_limit_per_file": 200,
            "file_types": file_types,
            "files_limit_percent": 90,
            "sample_method": "RANDOM_START",
        }
    }

    # Tell the API where to send a notification when the job is complete.
    topic = google.cloud.pubsub.PublisherClient.topic_path(project, topic_id)
    actions = [{"pub_sub": {"topic": topic}}]

    # Construct the inspect_job, which defines the entire inspect content task.
    inspect_job = {
        "inspect_config": inspect_config,
        "storage_config": storage_config,
        "actions": actions,
    }

    # Convert the project id into full resource ids.
    parent = f"projects/{project}/locations/global"

    # Call the API
    operation = dlp.create_dlp_job(
        request={"parent": parent, "inspect_job": inspect_job}
    )
    print(f"Inspection operation started: {operation.name}")

    # Create a Pub/Sub client and find the subscription. The subscription is
    # expected to already be listening to the topic.
    subscriber = google.cloud.pubsub.SubscriberClient()
    subscription_path = subscriber.subscription_path(project, subscription_id)

    # Set up a callback to acknowledge a message. This closes around an event
    # so that it can signal that it is done and the main thread can continue.
    job_done = threading.Event()

    def callback(message):
        try:
            if message.attributes["DlpJobName"] == operation.name:
                # This is the message we're looking for, so acknowledge it.
                message.ack()

                # Now that the job is done, fetch the results and print them.
                job = dlp.get_dlp_job(request={"name": operation.name})
                print(f"Job name: {job.name}")
                if job.inspect_details.result.info_type_stats:
                    print("Findings:")
                    for finding in job.inspect_details.result.info_type_stats:
                        print(
                            f"Info type: {finding.info_type.name}; Count: {finding.count}"
                        )
                else:
                    print("No findings.")

                # Signal to the main thread that we can exit.
                job_done.set()
            else:
                # This is not the message we're looking for.
                message.drop()
        except Exception as e:
            # Because this is executing in a thread, an exception won't be
            # noted unless we print it manually.
            print(e)
            raise

    # Register the callback and wait on the event.
    subscriber.subscribe(subscription_path, callback=callback)
    finished = job_done.wait(timeout=timeout)
    if not finished:
        print(
            "No event received before the timeout. Please verify that the "
            "subscription provided is subscribed to the topic provided."
        )

REST

Input JSON:

POST https://dlp.googleapis.com/v2/projects/[PROJECT-ID]/dlpJobs?key={YOUR_API_KEY}

{
  "inspectJob":{
    "storageConfig":{
      "cloudStorageOptions":{
        "fileSet":{
          "url":"gs://[BUCKET-NAME]/*"
        },
        "bytesLimitPerFile":"200",
        "fileTypes":[
          "TEXT_FILE"
        ],
        "filesLimitPercent":90,
        "sampleMethod":"RANDOM_START"
      }
    },
    "inspectConfig":{
      "infoTypes":[
        {
          "name":"PERSON_NAME"
        }
      ],
      "excludeInfoTypes":true,
      "includeQuote":true,
      "minLikelihood":"POSSIBLE"
    },
    "actions":[
      {
        "saveFindings":{
          "outputConfig":{
            "table":{
              "projectId":"[PROJECT-ID]",
              "datasetId":"testingdlp"
            },
            "outputSchema":"BASIC_COLUMNS"
          }
        }
      }
    ]
  }
}

Setelah mengirim input JSON dalam permintaan POST ke endpoint yang ditentukan, tugas Perlindungan Data Sensitif akan dibuat, dan API akan mengirimkan respons berikut.

Output JSON:

{
  "name":"projects/[PROJECT-ID]/dlpJobs/[JOB-ID]",
  "type":"INSPECT_JOB",
  "state":"PENDING",
  "inspectDetails":{
    "requestedOptions":{
      "snapshotInspectTemplate":{

      },
      "jobConfig":{
        "storageConfig":{
          "cloudStorageOptions":{
            "fileSet":{
              "url":"gs://[BUCKET_NAME]/*"
            },
            "bytesLimitPerFile":"200",
            "fileTypes":[
              "TEXT_FILE"
            ],
            "sampleMethod":"TOP",
            "filesLimitPercent":90
          }
        },
        "inspectConfig":{
          "infoTypes":[
            {
              "name":"PERSON_NAME"
            }
          ],
          "minLikelihood":"POSSIBLE",
          "limits":{

          },
          "includeQuote":true,
          "excludeInfoTypes":true
        },
        "actions":[
          {
            "saveFindings":{
              "outputConfig":{
                "table":{
                  "projectId":"[PROJECT-ID]",
                  "datasetId":"[DATASET-ID]",
                  "tableId":"[TABLE-ID]"
                },
                "outputSchema":"BASIC_COLUMNS"
              }
            }
          }
        ]
      }
    }
  },
  "createTime":"2018-05-30T22:22:08.279Z"
}

Membatasi pemindaian BigQuery

Untuk mengaktifkan pengambilan sampel di BigQuery dengan membatasi jumlah data yang dipindai, tentukan kolom opsional berikut dalam BigQueryOptions:

  • rowsLimit: Jumlah maksimum baris yang akan dipindai. Jika tabel memiliki lebih banyak baris dari nilai ini, baris lainnya akan dihilangkan. Jika tidak ditetapkan, atau jika ditetapkan ke 0, semua baris akan dipindai.
  • rowsLimitPercent: Persentase maksimum baris yang akan dipindai (antara 0 dan 100). Baris yang tersisa akan dihilangkan. Menetapkan nilai ini ke 0 atau 100 berarti tidak ada batas. Nilai defaultnya adalah 0. Hanya satu dari rowsLimit dan rowsLimitPercent yang dapat ditentukan.

  • sampleMethod: Cara mengambil sampel baris jika tidak semua baris dipindai. Jika tidak ditentukan, pemindaian akan dimulai dari atas. Kolom ini dapat disetel ke salah satu dari dua nilai berikut:

    • TOP: Pemindaian dimulai dari atas.
    • RANDOM_START: Pemindaian dimulai dari baris yang dipilih secara acak.
  • excludedFields: Kolom tabel yang secara unik mengidentifikasi kolom yang akan dikecualikan dari pembacaan. Hal ini dapat membantu mengurangi jumlah data yang dipindai dan menurunkan biaya keseluruhan tugas inspeksi.

  • includedFields: Kolom tabel yang mengidentifikasi baris tertentu secara unik dalam tabel yang akan dipindai.

Fitur lain yang berguna untuk membatasi data yang dipindai, terutama saat memindai tabel yang dipartisi, adalah TimespanConfig. TimespanConfig memungkinkan Anda memfilter baris tabel BigQuery dengan memberikan nilai waktu mulai dan waktu berakhir untuk menentukan rentang waktu. Kemudian, Sensitive Data Protection hanya akan memindai baris yang berisi stempel waktu dalam jangka waktu tersebut.

Contoh berikut menunjukkan penggunaan DLP API untuk memindai subset 1.000 baris dari tabel BigQuery. Pemindaian dimulai dari baris acak.

Go

Untuk mempelajari cara menginstal dan menggunakan library klien untuk Perlindungan Data Sensitif, lihat library klien Perlindungan Data Sensitif.

Untuk melakukan autentikasi ke Perlindungan Data Sensitif, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, lihat Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

import (
	"context"
	"fmt"
	"io"
	"time"

	dlp "cloud.google.com/go/dlp/apiv2"
	"cloud.google.com/go/dlp/apiv2/dlppb"
	"cloud.google.com/go/pubsub"
)

// inspectBigQueryTableWithSampling inspect bigQueries for sensitive data with sampling
func inspectBigQueryTableWithSampling(w io.Writer, projectID, topicID, subscriptionID string) error {
	// projectId := "your-project-id"
	// topicID := "your-pubsub-topic-id"
	// or provide a topicID name to create one
	// subscriptionID := "your-pubsub-subscription-id"
	// or provide a subscription name to create one

	ctx := context.Background()

	// Initialize a client once and reuse it to send multiple requests. Clients
	// are safe to use across goroutines. When the client is no longer needed,
	// call the Close method to cleanup its resources.
	client, err := dlp.NewClient(ctx)
	if err != nil {
		return err
	}

	// Closing the client safely cleans up background resources.
	defer client.Close()

	// Specify the BigQuery table to be inspected.
	tableReference := &dlppb.BigQueryTable{
		ProjectId: "bigquery-public-data",
		DatasetId: "usa_names",
		TableId:   "usa_1910_current",
	}

	bigQueryOptions := &dlppb.BigQueryOptions{
		TableReference: tableReference,
		RowsLimit:      int64(10000),
		SampleMethod:   dlppb.BigQueryOptions_RANDOM_START,
		IdentifyingFields: []*dlppb.FieldId{
			{Name: "name"},
		},
	}

	// Provide storage config with BigqueryOptions
	storageConfig := &dlppb.StorageConfig{
		Type: &dlppb.StorageConfig_BigQueryOptions{
			BigQueryOptions: bigQueryOptions,
		},
	}

	// Specify the type of info the inspection will look for.
	// See https://cloud.google.com/dlp/docs/infotypes-reference for complete list of info types
	infoTypes := []*dlppb.InfoType{
		{Name: "PERSON_NAME"},
	}

	// Specify how the content should be inspected.
	inspectConfig := &dlppb.InspectConfig{
		InfoTypes:    infoTypes,
		IncludeQuote: true,
	}

	// Create a PubSub Client used to listen for when the inspect job finishes.
	pubsubClient, err := pubsub.NewClient(ctx, projectID)
	if err != nil {
		return err
	}
	defer pubsubClient.Close()

	// Create a PubSub subscription we can use to listen for messages.
	// Create the Topic if it doesn't exist.
	t := pubsubClient.Topic(topicID)
	if exists, err := t.Exists(ctx); err != nil {
		return err
	} else if !exists {
		if t, err = pubsubClient.CreateTopic(ctx, topicID); err != nil {
			return err
		}
	}

	// Create the Subscription if it doesn't exist.
	s := pubsubClient.Subscription(subscriptionID)
	if exists, err := s.Exists(ctx); err != nil {
		return err
	} else if !exists {
		if s, err = pubsubClient.CreateSubscription(ctx, subscriptionID, pubsub.SubscriptionConfig{Topic: t}); err != nil {
			return err
		}
	}

	// topic is the PubSub topic string where messages should be sent.
	topic := fmt.Sprintf("projects/%s/topics/%s", projectID, topicID)

	action := &dlppb.Action{
		Action: &dlppb.Action_PubSub{
			PubSub: &dlppb.Action_PublishToPubSub{
				Topic: topic,
			},
		},
	}

	// Configure the long running job we want the service to perform.
	inspectJobConfig := &dlppb.InspectJobConfig{
		StorageConfig: storageConfig,
		InspectConfig: inspectConfig,
		Actions: []*dlppb.Action{
			action,
		},
	}

	// Create the request for the job configured above.
	req := &dlppb.CreateDlpJobRequest{
		Parent: fmt.Sprintf("projects/%s/locations/global", projectID),
		Job: &dlppb.CreateDlpJobRequest_InspectJob{
			InspectJob: inspectJobConfig,
		},
	}

	// Use the client to send the request.
	j, err := client.CreateDlpJob(ctx, req)
	if err != nil {
		return err
	}
	fmt.Fprintf(w, "Job Created: %v", j.GetName())

	// Wait for the inspect job to finish by waiting for a PubSub message.
	// This only waits for 10 minutes. For long jobs, consider using a truly
	// asynchronous execution model such as Cloud Functions.
	c, cancel := context.WithTimeout(ctx, 10*time.Minute)
	defer cancel()
	err = s.Receive(c, func(ctx context.Context, msg *pubsub.Message) {
		// If this is the wrong job, do not process the result.
		if msg.Attributes["DlpJobName"] != j.GetName() {
			msg.Nack()
			return
		}
		msg.Ack()

		// Stop listening for more messages.
		defer cancel()
	})
	if err != nil {
		return err
	}

	resp, err := client.GetDlpJob(ctx, &dlppb.GetDlpJobRequest{
		Name: j.GetName(),
	})
	if err != nil {
		return err
	}
	r := resp.GetInspectDetails().GetResult().GetInfoTypeStats()
	if len(r) == 0 {
		fmt.Fprintf(w, "No results")
		return err
	}
	for _, s := range r {
		fmt.Fprintf(w, "\nFound %v instances of infoType %v\n", s.GetCount(), s.GetInfoType().GetName())
	}
	return nil

}

Java

Untuk mempelajari cara menginstal dan menggunakan library klien untuk Perlindungan Data Sensitif, lihat library klien Perlindungan Data Sensitif.

Untuk melakukan autentikasi ke Perlindungan Data Sensitif, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, lihat Menyiapkan autentikasi untuk lingkungan pengembangan lokal.


import com.google.api.core.SettableApiFuture;
import com.google.cloud.dlp.v2.DlpServiceClient;
import com.google.cloud.pubsub.v1.AckReplyConsumer;
import com.google.cloud.pubsub.v1.MessageReceiver;
import com.google.cloud.pubsub.v1.Subscriber;
import com.google.privacy.dlp.v2.Action;
import com.google.privacy.dlp.v2.BigQueryOptions;
import com.google.privacy.dlp.v2.BigQueryOptions.SampleMethod;
import com.google.privacy.dlp.v2.BigQueryTable;
import com.google.privacy.dlp.v2.CreateDlpJobRequest;
import com.google.privacy.dlp.v2.DlpJob;
import com.google.privacy.dlp.v2.FieldId;
import com.google.privacy.dlp.v2.GetDlpJobRequest;
import com.google.privacy.dlp.v2.InfoType;
import com.google.privacy.dlp.v2.InfoTypeStats;
import com.google.privacy.dlp.v2.InspectConfig;
import com.google.privacy.dlp.v2.InspectDataSourceDetails;
import com.google.privacy.dlp.v2.InspectJobConfig;
import com.google.privacy.dlp.v2.LocationName;
import com.google.privacy.dlp.v2.StorageConfig;
import com.google.pubsub.v1.ProjectSubscriptionName;
import com.google.pubsub.v1.PubsubMessage;
import java.io.IOException;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;

public class InspectBigQueryTableWithSampling {

  public static void main(String[] args) throws Exception {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "your-project-id";
    String topicId = "your-pubsub-topic-id";
    String subscriptionId = "your-pubsub-subscription-id";
    inspectBigQueryTableWithSampling(projectId, topicId, subscriptionId);
  }

  // Inspects a BigQuery Table
  public static void inspectBigQueryTableWithSampling(
      String projectId, String topicId, String subscriptionId)
      throws ExecutionException, InterruptedException, IOException {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (DlpServiceClient dlp = DlpServiceClient.create()) {
      // Specify the BigQuery table to be inspected.
      BigQueryTable tableReference =
          BigQueryTable.newBuilder()
              .setProjectId("bigquery-public-data")
              .setDatasetId("usa_names")
              .setTableId("usa_1910_current")
              .build();

      BigQueryOptions bigQueryOptions =
          BigQueryOptions.newBuilder()
              .setTableReference(tableReference)
              .setRowsLimit(1000)
              .setSampleMethod(SampleMethod.RANDOM_START)
              .addIdentifyingFields(FieldId.newBuilder().setName("name"))
              .build();

      StorageConfig storageConfig =
          StorageConfig.newBuilder().setBigQueryOptions(bigQueryOptions).build();

      // Specify the type of info the inspection will look for.
      // See https://cloud.google.com/dlp/docs/infotypes-reference for complete list of info types
      InfoType infoType = InfoType.newBuilder().setName("PERSON_NAME").build();

      // Specify how the content should be inspected.
      InspectConfig inspectConfig =
          InspectConfig.newBuilder().addInfoTypes(infoType).setIncludeQuote(true).build();

      // Specify the action that is triggered when the job completes.
      String pubSubTopic = String.format("projects/%s/topics/%s", projectId, topicId);
      Action.PublishToPubSub publishToPubSub =
          Action.PublishToPubSub.newBuilder().setTopic(pubSubTopic).build();
      Action action = Action.newBuilder().setPubSub(publishToPubSub).build();

      // Configure the long running job we want the service to perform.
      InspectJobConfig inspectJobConfig =
          InspectJobConfig.newBuilder()
              .setStorageConfig(storageConfig)
              .setInspectConfig(inspectConfig)
              .addActions(action)
              .build();

      // Create the request for the job configured above.
      CreateDlpJobRequest createDlpJobRequest =
          CreateDlpJobRequest.newBuilder()
              .setParent(LocationName.of(projectId, "global").toString())
              .setInspectJob(inspectJobConfig)
              .build();

      // Use the client to send the request.
      final DlpJob dlpJob = dlp.createDlpJob(createDlpJobRequest);
      System.out.println("Job created: " + dlpJob.getName());

      // Set up a Pub/Sub subscriber to listen on the job completion status
      final SettableApiFuture<Boolean> done = SettableApiFuture.create();

      ProjectSubscriptionName subscriptionName =
          ProjectSubscriptionName.of(projectId, subscriptionId);

      MessageReceiver messageHandler =
          (PubsubMessage pubsubMessage, AckReplyConsumer ackReplyConsumer) -> {
            handleMessage(dlpJob, done, pubsubMessage, ackReplyConsumer);
          };
      Subscriber subscriber = Subscriber.newBuilder(subscriptionName, messageHandler).build();
      subscriber.startAsync();

      // Wait for job completion semi-synchronously
      // For long jobs, consider using a truly asynchronous execution model such as Cloud Functions
      try {
        done.get(15, TimeUnit.MINUTES);
      } catch (TimeoutException e) {
        System.out.println("Job was not completed after 15 minutes.");
        return;
      } finally {
        subscriber.stopAsync();
        subscriber.awaitTerminated();
      }

      // Get the latest state of the job from the service
      GetDlpJobRequest request = GetDlpJobRequest.newBuilder().setName(dlpJob.getName()).build();
      DlpJob completedJob = dlp.getDlpJob(request);

      // Parse the response and process results.
      System.out.println("Job status: " + completedJob.getState());
      System.out.println("Job name: " + dlpJob.getName());
      InspectDataSourceDetails.Result result = completedJob.getInspectDetails().getResult();
      System.out.println("Findings: ");
      for (InfoTypeStats infoTypeStat : result.getInfoTypeStatsList()) {
        System.out.print("\tInfo type: " + infoTypeStat.getInfoType().getName());
        System.out.println("\tCount: " + infoTypeStat.getCount());
      }
    }
  }

  // handleMessage injects the job and settableFuture into the message reciever interface
  private static void handleMessage(
      DlpJob job,
      SettableApiFuture<Boolean> done,
      PubsubMessage pubsubMessage,
      AckReplyConsumer ackReplyConsumer) {
    String messageAttribute = pubsubMessage.getAttributesMap().get("DlpJobName");
    if (job.getName().equals(messageAttribute)) {
      done.set(true);
      ackReplyConsumer.ack();
    } else {
      ackReplyConsumer.nack();
    }
  }
}

Node.js

Untuk mempelajari cara menginstal dan menggunakan library klien untuk Perlindungan Data Sensitif, lihat library klien Perlindungan Data Sensitif.

Untuk melakukan autentikasi ke Perlindungan Data Sensitif, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, lihat Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

// Import the Google Cloud client libraries
const DLP = require('@google-cloud/dlp');
const {PubSub} = require('@google-cloud/pubsub');

// Instantiates clients
const dlp = new DLP.DlpServiceClient();
const pubsub = new PubSub();

// The project ID to run the API call under
// const projectId = 'my-project';

// The project ID the table is stored under
// This may or (for public datasets) may not equal the calling project ID
// const dataProjectId = 'my-project';

// The ID of the dataset to inspect, e.g. 'my_dataset'
// const datasetId = 'my_dataset';

// The ID of the table to inspect, e.g. 'my_table'
// const tableId = 'my_table';

// The name of the Pub/Sub topic to notify once the job completes
// TODO(developer): create a Pub/Sub topic to use for this
// const topicId = 'MY-PUBSUB-TOPIC'

// The name of the Pub/Sub subscription to use when listening for job
// completion notifications
// TODO(developer): create a Pub/Sub subscription to use for this
// const subscriptionId = 'MY-PUBSUB-SUBSCRIPTION'

// DLP Job max time (in milliseconds)
const DLP_JOB_WAIT_TIME = 15 * 1000 * 60;

async function inspectBigqueryWithSampling() {
  // Specify the type of info the inspection will look for.
  // See https://cloud.google.com/dlp/docs/infotypes-reference for complete list of info types
  const infoTypes = [{name: 'PERSON_NAME'}];

  // Specify the BigQuery options required for inspection.
  const storageItem = {
    bigQueryOptions: {
      tableReference: {
        projectId: dataProjectId,
        datasetId: datasetId,
        tableId: tableId,
      },
      rowsLimit: 1000,
      sampleMethod:
        DLP.protos.google.privacy.dlp.v2.BigQueryOptions.SampleMethod
          .RANDOM_START,
      includedFields: [{name: 'name'}],
    },
  };

  // Specify the action that is triggered when the job completes.
  const actions = [
    {
      pubSub: {
        topic: `projects/${projectId}/topics/${topicId}`,
      },
    },
  ];

  // Construct request for creating an inspect job
  const request = {
    parent: `projects/${projectId}/locations/global`,
    inspectJob: {
      inspectConfig: {
        infoTypes: infoTypes,
        includeQuote: true,
      },
      storageConfig: storageItem,
      actions: actions,
    },
  };
  // Use the client to send the request.
  const [topicResponse] = await pubsub.topic(topicId).get();

  // Verify the Pub/Sub topic and listen for job notifications via an
  // existing subscription.
  const subscription = await topicResponse.subscription(subscriptionId);

  const [jobsResponse] = await dlp.createDlpJob(request);
  const jobName = jobsResponse.name;

  // Watch the Pub/Sub topic until the DLP job finishes
  await new Promise((resolve, reject) => {
    // Set up the timeout
    const timer = setTimeout(() => {
      reject(new Error('Timeout'));
    }, DLP_JOB_WAIT_TIME);

    const messageHandler = message => {
      if (message.attributes && message.attributes.DlpJobName === jobName) {
        message.ack();
        subscription.removeListener('message', messageHandler);
        subscription.removeListener('error', errorHandler);
        clearTimeout(timer);
        resolve(jobName);
      } else {
        message.nack();
      }
    };

    const errorHandler = err => {
      subscription.removeListener('message', messageHandler);
      subscription.removeListener('error', errorHandler);
      clearTimeout(timer);
      reject(err);
    };

    subscription.on('message', messageHandler);
    subscription.on('error', errorHandler);
  });
  const [job] = await dlp.getDlpJob({name: jobName});
  console.log(`Job ${job.name} status: ${job.state}`);

  const infoTypeStats = job.inspectDetails.result.infoTypeStats;
  if (infoTypeStats.length > 0) {
    infoTypeStats.forEach(infoTypeStat => {
      console.log(
        `  Found ${infoTypeStat.count} instance(s) of infoType ${infoTypeStat.infoType.name}.`
      );
    });
  } else {
    console.log('No findings.');
  }
}

await inspectBigqueryWithSampling();

PHP

Untuk mempelajari cara menginstal dan menggunakan library klien untuk Perlindungan Data Sensitif, lihat library klien Perlindungan Data Sensitif.

Untuk melakukan autentikasi ke Perlindungan Data Sensitif, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, lihat Menyiapkan autentikasi untuk lingkungan pengembangan lokal.


use Google\Cloud\Dlp\V2\DlpServiceClient;
use Google\Cloud\Dlp\V2\BigQueryOptions;
use Google\Cloud\Dlp\V2\InfoType;
use Google\Cloud\Dlp\V2\InspectConfig;
use Google\Cloud\Dlp\V2\StorageConfig;
use Google\Cloud\Dlp\V2\BigQueryTable;
use Google\Cloud\Dlp\V2\DlpJob\JobState;
use Google\Cloud\Dlp\V2\Action;
use Google\Cloud\Dlp\V2\Action\PublishToPubSub;
use Google\Cloud\Dlp\V2\BigQueryOptions\SampleMethod;
use Google\Cloud\Dlp\V2\FieldId;
use Google\Cloud\Dlp\V2\InspectJobConfig;
use Google\Cloud\PubSub\PubSubClient;

/**
 * Inspect BigQuery for sensitive data with sampling.
 * The following examples demonstrate using the Cloud Data Loss Prevention
 * API to scan a 1000-row subset of a BigQuery table. The scan starts from
 * a random row.
 *
 * @param string $callingProjectId  The project ID to run the API call under.
 * @param string $topicId           The Pub/Sub topic ID to notify once the job is completed.
 * @param string $subscriptionId    The Pub/Sub subscription ID to use when listening for job.
 * @param string $projectId         The Google Cloud Project ID.
 * @param string $datasetId         The BigQuery Dataset ID.
 * @param string $tableId           The BigQuery Table ID to be inspected.
 */
function inspect_bigquery_with_sampling(
    string $callingProjectId,
    string $topicId,
    string $subscriptionId,
    string $projectId,
    string $datasetId,
    string $tableId
): void {
    // Instantiate a client.
    $dlp = new DlpServiceClient();
    $pubsub = new PubSubClient();
    $topic = $pubsub->topic($topicId);

    // Specify the BigQuery table to be inspected.
    $bigqueryTable = (new BigQueryTable())
        ->setProjectId($projectId)
        ->setDatasetId($datasetId)
        ->setTableId($tableId);

    $bigQueryOptions = (new BigQueryOptions())
        ->setTableReference($bigqueryTable)
        ->setRowsLimit(1000)
        ->setSampleMethod(SampleMethod::RANDOM_START)
        ->setIdentifyingFields([
            (new FieldId())
                ->setName('name')
        ]);

    $storageConfig = (new StorageConfig())
        ->setBigQueryOptions($bigQueryOptions);

    // Specify the type of info the inspection will look for.
    // See https://cloud.google.com/dlp/docs/infotypes-reference for complete list of info types
    $personNameInfoType = (new InfoType())
        ->setName('PERSON_NAME');
    $infoTypes = [$personNameInfoType];

    // Specify how the content should be inspected.
    $inspectConfig = (new InspectConfig())
        ->setInfoTypes($infoTypes)
        ->setIncludeQuote(true);

    // Specify the action that is triggered when the job completes.
    $pubSubAction = (new PublishToPubSub())
        ->setTopic($topic->name());

    $action = (new Action())
        ->setPubSub($pubSubAction);

    // Configure the long running job we want the service to perform.
    $inspectJob = (new InspectJobConfig())
        ->setInspectConfig($inspectConfig)
        ->setStorageConfig($storageConfig)
        ->setActions([$action]);

    // Listen for job notifications via an existing topic/subscription.
    $subscription = $topic->subscription($subscriptionId);

    // Submit request
    $parent = "projects/$callingProjectId/locations/global";
    $job = $dlp->createDlpJob($parent, [
        'inspectJob' => $inspectJob
    ]);

    // Poll Pub/Sub using exponential backoff until job finishes
    // Consider using an asynchronous execution model such as Cloud Functions
    $attempt = 1;
    $startTime = time();
    do {
        foreach ($subscription->pull() as $message) {
            if (
                isset($message->attributes()['DlpJobName']) &&
                $message->attributes()['DlpJobName'] === $job->getName()
            ) {
                $subscription->acknowledge($message);
                // Get the updated job. Loop to avoid race condition with DLP API.
                do {
                    $job = $dlp->getDlpJob($job->getName());
                } while ($job->getState() == JobState::RUNNING);
                break 2; // break from parent do while
            }
        }
        printf('Waiting for job to complete' . PHP_EOL);
        // Exponential backoff with max delay of 60 seconds
        sleep(min(60, pow(2, ++$attempt)));
    } while (time() - $startTime < 600); // 10 minute timeout

    // Print finding counts
    printf('Job %s status: %s' . PHP_EOL, $job->getName(), JobState::name($job->getState()));
    switch ($job->getState()) {
        case JobState::DONE:
            $infoTypeStats = $job->getInspectDetails()->getResult()->getInfoTypeStats();
            if (count($infoTypeStats) === 0) {
                printf('No findings.' . PHP_EOL);
            } else {
                foreach ($infoTypeStats as $infoTypeStat) {
                    printf(
                        '  Found %s instance(s) of infoType %s' . PHP_EOL,
                        $infoTypeStat->getCount(),
                        $infoTypeStat->getInfoType()->getName()
                    );
                }
            }
            break;
        case JobState::FAILED:
            printf('Job %s had errors:' . PHP_EOL, $job->getName());
            $errors = $job->getErrors();
            foreach ($errors as $error) {
                var_dump($error->getDetails());
            }
            break;
        case JobState::PENDING:
            printf('Job has not completed. Consider a longer timeout or an asynchronous execution model' . PHP_EOL);
            break;
        default:
            printf('Unexpected job state. Most likely, the job is either running or has not yet started.');
    }
}

Python

Untuk mempelajari cara menginstal dan menggunakan library klien untuk Perlindungan Data Sensitif, lihat library klien Perlindungan Data Sensitif.

Untuk melakukan autentikasi ke Perlindungan Data Sensitif, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, lihat Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

import threading

import google.cloud.dlp
import google.cloud.pubsub


def inspect_bigquery_table_with_sampling(
    project: str,
    topic_id: str,
    subscription_id: str,
    min_likelihood: str = None,
    max_findings: str = None,
    timeout: int = 300,
) -> None:
    """Uses the Data Loss Prevention API to analyze BigQuery data by limiting
    the amount of data to be scanned.
    Args:
        project: The Google Cloud project id to use as a parent resource.
        topic_id: The id of the Cloud Pub/Sub topic to which the API will
            broadcast job completion. The topic must already exist.
        subscription_id: The id of the Cloud Pub/Sub subscription to listen on
            while waiting for job completion. The subscription must already
            exist and be subscribed to the topic.
        min_likelihood: A string representing the minimum likelihood threshold
            that constitutes a match. One of: 'LIKELIHOOD_UNSPECIFIED',
            'VERY_UNLIKELY', 'UNLIKELY', 'POSSIBLE', 'LIKELY', 'VERY_LIKELY'.
        max_findings: The maximum number of findings to report; 0 = no maximum.
        timeout: The number of seconds to wait for a response from the API.
    """

    # Instantiate a client.
    dlp = google.cloud.dlp_v2.DlpServiceClient()

    # Specify how the content should be inspected. Keys which are None may
    # optionally be omitted entirely.
    inspect_config = {
        "info_types": [{"name": "PERSON_NAME"}],
        "min_likelihood": min_likelihood,
        "limits": {"max_findings_per_request": max_findings},
        "include_quote": True,
    }

    # Specify the BigQuery table to be inspected.
    # Here we are using public bigquery table.
    table_reference = {
        "project_id": "bigquery-public-data",
        "dataset_id": "usa_names",
        "table_id": "usa_1910_current",
    }

    # Construct a storage_config containing the target BigQuery info.
    storage_config = {
        "big_query_options": {
            "table_reference": table_reference,
            "rows_limit": 1000,
            "sample_method": "RANDOM_START",
            "identifying_fields": [{"name": "name"}],
        }
    }

    # Tell the API where to send a notification when the job is complete.
    topic = google.cloud.pubsub.PublisherClient.topic_path(project, topic_id)
    actions = [{"pub_sub": {"topic": topic}}]

    # Construct the inspect_job, which defines the entire inspect content task.
    inspect_job = {
        "inspect_config": inspect_config,
        "storage_config": storage_config,
        "actions": actions,
    }

    # Convert the project id into full resource ids.
    parent = f"projects/{project}/locations/global"

    # Call the API
    operation = dlp.create_dlp_job(
        request={"parent": parent, "inspect_job": inspect_job}
    )
    print(f"Inspection operation started: {operation.name}")

    # Create a Pub/Sub client and find the subscription. The subscription is
    # expected to already be listening to the topic.
    subscriber = google.cloud.pubsub.SubscriberClient()
    subscription_path = subscriber.subscription_path(project, subscription_id)

    # Set up a callback to acknowledge a message. This closes around an event
    # so that it can signal that it is done and the main thread can continue.
    job_done = threading.Event()

    def callback(message: google.cloud.pubsub_v1.subscriber.message.Message) -> None:
        try:
            if message.attributes["DlpJobName"] == operation.name:
                # This is the message we're looking for, so acknowledge it.
                message.ack()

                # Now that the job is done, fetch the results and print them.
                job = dlp.get_dlp_job(request={"name": operation.name})
                print(f"Job name: {job.name}")

                if job.inspect_details.result.info_type_stats:
                    for finding in job.inspect_details.result.info_type_stats:
                        print(
                            f"Info type: {finding.info_type.name}; Count: {finding.count}"
                        )
                else:
                    print("No findings.")

                # Signal to the main thread that we can exit.
                job_done.set()
            else:
                # This is not the message we're looking for.
                message.drop()

        except Exception as e:
            # Because this is executing in a thread, an exception won't be
            # noted unless we print it manually.
            print(e)
            raise

    # Register the callback and wait on the event.
    subscriber.subscribe(subscription_path, callback=callback)
    finished = job_done.wait(timeout=timeout)
    if not finished:
        print(
            "No event received before the timeout. Please verify that the "
            "subscription provided is subscribed to the topic provided."
        )

C#

Untuk mempelajari cara menginstal dan menggunakan library klien untuk Perlindungan Data Sensitif, lihat library klien Perlindungan Data Sensitif.

Untuk melakukan autentikasi ke Perlindungan Data Sensitif, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, lihat Menyiapkan autentikasi untuk lingkungan pengembangan lokal.


using Google.Api.Gax.ResourceNames;
using Google.Cloud.Dlp.V2;
using Google.Cloud.PubSub.V1;
using System.Collections.Generic;
using System.Threading;
using System.Threading.Tasks;
using static Google.Cloud.Dlp.V2.InspectConfig.Types;

public class InspectBigQueryWithSampling
{
    public static async Task<DlpJob> InspectAsync(
        string projectId,
        int maxFindings,
        bool includeQuote,
        string topicId,
        string subId,
        Likelihood minLikelihood = Likelihood.Possible,
        IEnumerable<FieldId> identifyingFields = null,
        IEnumerable<InfoType> infoTypes = null)
    {

        // Instantiate the dlp client.
        var dlp = DlpServiceClient.Create();

        // Construct Storage config.
        var storageConfig = new StorageConfig
        {
            BigQueryOptions = new BigQueryOptions
            {
                TableReference = new BigQueryTable
                {
                    ProjectId = "bigquery-public-data",
                    DatasetId = "usa_names",
                    TableId = "usa_1910_current",
                },
                IdentifyingFields =
                {
                    identifyingFields ?? new FieldId[] { new FieldId { Name = "name" } }
                },
                RowsLimit = 100,
                SampleMethod = BigQueryOptions.Types.SampleMethod.RandomStart
            }
        };

        // Construct the inspect config.
        var inspectConfig = new InspectConfig
        {
            InfoTypes = { infoTypes ?? new InfoType[] { new InfoType { Name = "PERSON_NAME" } } },
            Limits = new FindingLimits
            {
                MaxFindingsPerRequest = maxFindings,
            },
            IncludeQuote = includeQuote,
            MinLikelihood = minLikelihood
        };

        // Construct the pubsub action.
        var actions = new Action[]
        {
            new Action
            {
                PubSub = new Action.Types.PublishToPubSub
                {
                    Topic = $"projects/{projectId}/topics/{topicId}"
                }
            }
        };

        // Construct the inspect job config using the actions.
        var inspectJob = new InspectJobConfig
        {
            StorageConfig = storageConfig,
            InspectConfig = inspectConfig,
            Actions = { actions }
        };

        // Issue Create Dlp Job Request.
        var request = new CreateDlpJobRequest
        {
            InspectJob = inspectJob,
            ParentAsLocationName = new LocationName(projectId, "global"),
        };

        // We keep the name of the job that we just created.
        var dlpJob = dlp.CreateDlpJob(request);
        var jobName = dlpJob.Name;

        // Listen to pub/sub for the job.
        var subscriptionName = new SubscriptionName(projectId, subId);
        var subscriber = await SubscriberClient.CreateAsync(
            subscriptionName);

        // SimpleSubscriber runs your message handle function on multiple threads to maximize throughput.
        await subscriber.StartAsync((PubsubMessage message, CancellationToken cancel) =>
        {
            if (message.Attributes["DlpJobName"] == jobName)
            {
                subscriber.StopAsync(cancel);
                return Task.FromResult(SubscriberClient.Reply.Ack);
            }
            else
            {
                return Task.FromResult(SubscriberClient.Reply.Nack);
            }
        });

        // Get the latest state of the job from the service.
        var resultJob = dlp.GetDlpJob(new GetDlpJobRequest
        {
            DlpJobName = DlpJobName.Parse(jobName)
        });

        // Parse the response and process results.
        System.Console.WriteLine($"Job status: {resultJob.State}");
        System.Console.WriteLine($"Job Name: {resultJob.Name}");
        var result = resultJob.InspectDetails.Result;
        foreach (var infoType in result.InfoTypeStats)
        {
            System.Console.WriteLine($"Info Type: {infoType.InfoType.Name}");
            System.Console.WriteLine($"Count: {infoType.Count}");
        }
        return resultJob;
    }
}

REST

Input JSON:

POST https://dlp.googleapis.com/v2/projects/[PROJECT-ID]/dlpJobs?key={YOUR_API_KEY}

{
  "inspectJob":{
    "storageConfig":{
      "bigQueryOptions":{
        "tableReference":{
          "projectId":"bigquery-public-data",
          "datasetId":"usa_names",
          "tableId":"usa_1910_current"
        },
        "rowsLimit":"1000",
        "sampleMethod":"RANDOM_START",
        "includedFields":[
          {
            "name":"name"
          }
        ]
      }
    },
    "inspectConfig":{
      "infoTypes":[
        {
          "name":"FIRST_NAME"
        }
      ],
      "includeQuote":true
    },
    "actions":[
      {
        "saveFindings":{
          "outputConfig":{
            "table":{
              "projectId":"[PROJECT-ID]",
              "datasetId":"testingdlp",
              "tableId":"bqsample3"
            },
            "outputSchema":"BASIC_COLUMNS"
          }
        }
      }
    ]
  }
}

Setelah mengirim input JSON dalam permintaan POST ke endpoint yang ditentukan, tugas Perlindungan Data Sensitif akan dibuat, dan API akan mengirimkan respons berikut.

Output JSON:

{
  "name": "projects/[PROJECT-ID]/dlpJobs/[JOB-ID]",
  "type": "INSPECT_JOB",
  "state": "PENDING",
  "inspectDetails": {
    "requestedOptions": {
      "snapshotInspectTemplate": {},
      "jobConfig": {
        "storageConfig": {
          "bigQueryOptions": {
            "tableReference": {
              "projectId": "bigquery-public-data",
              "datasetId": "usa_names",
              "tableId": "usa_1910_current"
            },
            "rowsLimit": "1000",
            "sampleMethod": "RANDOM_START",
            "includedFields": [
              {
                "name": "name"
              }
            ]
          }
        },
        "inspectConfig": {
          "infoTypes": [
            {
              "name": "FIRST_NAME"
            }
          ],
          "limits": {},
          "includeQuote": true
        },
        "actions": [
          {
            "saveFindings": {
              "outputConfig": {
                "table": {
                  "projectId": "[PROJECT-ID]",
                  "datasetId": "[DATASET-ID]",
                  "tableId": "bqsample"
                },
                "outputSchema": "BASIC_COLUMNS"
              }
            }
          }
        ]
      }
    },
    "result": {}
  },
  "createTime": "2022-11-04T18:53:48.350Z"
}

Saat tugas pemeriksaan selesai berjalan dan hasilnya telah diproses oleh BigQuery, hasil pemindaian akan tersedia di tabel output BigQuery yang ditentukan. Untuk informasi selengkapnya tentang mengambil hasil inspeksi, lihat bagian berikutnya.

Mengambil hasil inspeksi

Anda dapat mengambil ringkasan DlpJob menggunakan metode projects.dlpJobs.get. DlpJob yang ditampilkan menyertakan objek InspectDataSourceDetails, yang berisi ringkasan konfigurasi tugas (RequestedOptions) dan ringkasan hasil tugas (Result). Ringkasan hasil mencakup:

  • processedBytes: Total ukuran dalam byte yang telah diproses.
  • totalEstimatedBytes: Estimasi jumlah byte yang tersisa untuk diproses.
  • Objek InfoTypeStatistics: Statistik jumlah instance setiap infoType yang ditemukan selama tugas pemeriksaan.

Untuk hasil tugas inspeksi lengkap, Anda memiliki beberapa opsi. Bergantung pada Action yang Anda pilih, tugas pemeriksaan adalah:

  • Disimpan ke BigQuery (objek SaveFindings) dalam tabel yang ditentukan. Sebelum melihat atau menganalisis hasilnya, pastikan terlebih dahulu bahwa tugas telah selesai menggunakan metode projects.dlpJobs.get, yang dijelaskan di bawah. Perhatikan bahwa Anda dapat menentukan skema untuk menyimpan temuan menggunakan objek OutputSchema.
  • Dipublikasikan ke topik Pub/Sub (objek PublishToPubSub). Topik harus telah memberikan hak akses publikasi ke akun layanan Perlindungan Data Sensitif yang menjalankan DlpJob yang mengirim notifikasi.
  • Dipublikasikan ke Security Command Center.
  • Dipublikasikan ke Data Catalog.
  • Dipublikasikan ke Cloud Monitoring.

Untuk membantu memilah data dalam jumlah besar yang dihasilkan oleh Perlindungan Data Sensitif, Anda dapat menggunakan alat BigQuery bawaan untuk menjalankan analisis SQL yang kaya atau alat seperti Looker Studio untuk membuat laporan. Untuk informasi selengkapnya, lihat Menganalisis dan melaporkan temuan Perlindungan Data Sensitif. Untuk beberapa contoh kueri, lihat Membuat kueri terhadap penemuan di BigQuery.

Mengirim permintaan pemeriksaan repositori penyimpanan ke Perlindungan Data Sensitif akan membuat dan menjalankan instance objek DlpJob sebagai respons. Tugas ini dapat memerlukan waktu beberapa detik, menit, atau jam untuk dijalankan, bergantung pada ukuran data dan konfigurasi yang telah Anda tentukan. Memilih untuk memublikasikan ke topik Pub/Sub (dengan menentukan PublishToPubSub di Action) akan otomatis mengirimkan notifikasi ke topik dengan nama yang ditentukan saat status tugas berubah. Nama topik Pub/Sub ditentukan dalam bentuk projects/[PROJECT-ID]/topics/[PUBSUB-TOPIC-NAME].

Anda memiliki kontrol penuh atas tugas yang dibuat, termasuk metode pengelolaan berikut:

  • Metode projects.dlpJobs.cancel: Menghentikan tugas yang sedang berlangsung. Server melakukan upaya terbaik untuk membatalkan tugas, tetapi keberhasilannya tidak dijamin. Tugas dan konfigurasinya akan tetap ada hingga Anda menghapusnya (dengan .
  • Metode projects.dlpJobs.delete: Menghapus tugas dan konfigurasinya.
  • Metode projects.dlpJobs.get: Mengambil satu tugas dan menampilkan status, konfigurasinya, dan, jika tugas selesai, hasil ringkasan.
  • Metode projects.dlpJobs.list: Mengambil daftar semua tugas, dan menyertakan kemampuan untuk memfilter hasil.

Langkah berikutnya