Integración de Model Armor con los servicios de Google Cloud
Organízate con las colecciones
Guarda y clasifica el contenido según tus preferencias.
Model Armor se integra con varios Google Cloud servicios:
Google Kubernetes Engine (GKE) y extensiones de servicio
Vertex AI
GKE y Service Extensions
Model Armor se puede integrar con GKE a través de extensiones de servicio. Las extensiones de servicio te permiten integrar servicios internos (Google Cloud ) o externos (gestionados por el usuario) para procesar el tráfico. Puedes configurar una extensión de servicio en balanceadores de carga de aplicaciones, incluidas las pasarelas de inferencia de GKE, para examinar el tráfico hacia y desde un clúster de GKE. De esta forma, se verifica que todas las interacciones con los modelos de IA estén protegidas por Model Armor. Para obtener más información, consulta Integración con GKE.
Vertex AI
Model Armor se puede integrar directamente en Vertex AI mediante ajustes de suelo o plantillas.
Esta integración analiza las solicitudes y respuestas del modelo de Gemini, y bloquea las que infringen los ajustes mínimos. Esta integración proporciona protección de peticiones y respuestas en la API de Gemini en Vertex AI para el método generateContent. Debes habilitar Cloud Logging para ver los resultados de la anonimización de las peticiones y las respuestas. Para obtener más información, consulta Integración con Vertex AI.
Antes de empezar
Habilitar APIs
Para usar Model Armor, primero debes habilitar sus APIs.
Consola
Enable the Model Armor API.
Roles required to enable APIs
To enable APIs, you need the Service Usage Admin IAM
role (roles/serviceusage.serviceUsageAdmin), which
contains the serviceusage.services.enable permission. Learn how to grant
roles.
At the bottom of the Google Cloud console, a
Cloud Shell
session starts and displays a command-line prompt. Cloud Shell is a shell environment
with the Google Cloud CLI
already installed and with values already set for
your current project. It can take a few seconds for the session to initialize.
Ejecuta el siguiente comando para definir el endpoint de la API del servicio Model Armor.
En el caso de la opción de integración de la API REST, Model Armor funciona como detector solo con plantillas. Esto significa que identifica y comunica principalmente posibles infracciones de las políticas basándose en plantillas predefinidas, en lugar de prevenirlas de forma activa.
Con la opción de integración de Vertex AI, Model Armor ofrece la aplicación en línea mediante ajustes o plantillas de límite inferior. Esto significa que Model Armor aplica las políticas de forma activa interviniendo directamente en el proceso sin necesidad de modificar el código de tu aplicación.
Al igual que Vertex AI, la opción de integración de GKE también ofrece solo la aplicación insertada mediante plantillas. Esto indica que Model Armor puede aplicar políticas directamente en la pasarela de inferencia sin necesidad de modificar el código de tu aplicación.
[[["Es fácil de entender","easyToUnderstand","thumb-up"],["Me ofreció una solución al problema","solvedMyProblem","thumb-up"],["Otro","otherUp","thumb-up"]],[["Es difícil de entender","hardToUnderstand","thumb-down"],["La información o el código de muestra no son correctos","incorrectInformationOrSampleCode","thumb-down"],["Me faltan las muestras o la información que necesito","missingTheInformationSamplesINeed","thumb-down"],["Problema de traducción","translationIssue","thumb-down"],["Otro","otherDown","thumb-down"]],["Última actualización: 2025-09-10 (UTC)."],[],[],null,["# Model Armor integration with Google Cloud services\n\n| **Preview**\n|\n|\n| This feature is subject to the \"Pre-GA Offerings Terms\" in the General Service Terms section\n| of the [Service Specific Terms](/terms/service-terms#1).\n|\n| Pre-GA features are available \"as is\" and might have limited support.\n|\n| For more information, see the\n| [launch stage descriptions](/products#product-launch-stages).\n\nModel Armor integrates with various Google Cloud services:\n\n- Google Kubernetes Engine (GKE) and Service Extensions\n- Vertex AI\n\nGKE and Service Extensions\n--------------------------\n\nModel Armor can be integrated with GKE through\nService Extensions. Service Extensions allow you to integrate\ninternal (Google Cloud services) or external (user-managed) services to process\ntraffic. You can configure a service extension on application load balancers,\nincluding GKE inference gateways, to screen traffic to and from a\nGKE cluster. This verifies that all interactions with the AI models\nare protected by Model Armor. For more information, see\n[Integration with GKE](/security-command-center/docs/model-armor-gke-integration).\n\nVertex AI\n---------\n\nModel Armor can be directly integrated into Vertex AI using either\n[floor settings](/security-command-center/docs/model-armor-vertex-integration#configure-floor-settings) or\n[templates](/security-command-center/docs/model-armor-vertex-integration#configure-templates).\nThis integration screens Gemini model requests and responses, blocking\nthose that violate floor settings. This integration provides prompt and response\nprotection within Gemini API in Vertex AI for the\n`generateContent` method. You need to enable Cloud Logging to get visibility\ninto the sanitization results of prompts and responses. For more information, see\n[Integration with Vertex AI](/security-command-center/docs/model-armor-vertex-integration).\n\nBefore you begin\n----------------\n\n### Enable APIs\n\nYou must enable Model Armor APIs before you can use Model Armor. \n\n### Console\n\n1.\n\n\n Enable the Model Armor API.\n\n\n [Enable the API](https://console.cloud.google.com/flows/enableapi?apiid=modelarmor.googleapis.com)\n\n \u003cbr /\u003e\n\n2. Select the project where you want to activate Model Armor.\n\n### gcloud\n\nBefore you begin, follow these steps using the Google Cloud CLI with the\nModel Armor API:\n\n1.\n\n\n In the Google Cloud console, activate Cloud Shell.\n\n [Activate Cloud Shell](https://console.cloud.google.com/?cloudshell=true)\n\n\n At the bottom of the Google Cloud console, a\n [Cloud Shell](/shell/docs/how-cloud-shell-works)\n session starts and displays a command-line prompt. Cloud Shell is a shell environment\n with the Google Cloud CLI\n already installed and with values already set for\n your current project. It can take a few seconds for the session to initialize.\n\n \u003cbr /\u003e\n\n2. Run the following command to set the API endpoint for the\n Model Armor service.\n\n ```bash\n gcloud config set api_endpoint_overrides/modelarmor \"https://modelarmor.\u003cvar translate=\"no\"\u003eLOCATION\u003c/var\u003e.rep.googleapis.com/\"\n ```\n\n Replace \u003cvar translate=\"no\"\u003eLOCATION\u003c/var\u003e with the region where you want to use Model Armor.\n\nRun the following command to enable Model Armor.\n\n\u003cbr /\u003e\n\n```bash\n gcloud services enable modelarmor.googleapis.com --project=PROJECT_ID\n \n```\n\n\u003cbr /\u003e\n\nReplace \u003cvar translate=\"no\"\u003ePROJECT_ID\u003c/var\u003e with the ID of the project.\n\nOptions when integrating Model Armor\n------------------------------------\n\nModel Armor offers the following integration options. Each option provides different\nfeatures and capabilities.\n\nFor the REST API integration option, Model Armor functions as a detector\nonly using templates. This means it primarily identifies and reports potential\npolicy violations based on predefined templates, rather than actively preventing\nthem.\n\nWith the Vertex AI integration option, Model Armor provides\ninline enforcement using floor settings or templates. This means\nModel Armor actively enforces policies by intervening directly\nin the process without requiring modifications to your application code.\n\nSimilar to Vertex AI, the GKE integration option also\noffers inline enforcement only using templates. This indicates that\nModel Armor can enforce policies directly within the inference gateway\nwithout requiring modifications to your application code."]]