Reference documentation and code samples for the AI Platform Data Labeling Service V1beta1 API class Google::Cloud::DataLabeling::V1beta1::EvaluationJobConfig.
Configures specific details of how a continuous evaluation job works. Provide this configuration when you create an EvaluationJob.
Inherits
- Object
Extended By
- Google::Protobuf::MessageExts::ClassMethods
Includes
- Google::Protobuf::MessageExts
Methods
#bigquery_import_keys
def bigquery_import_keys() -> ::Google::Protobuf::Map{::String => ::String}
-
(::Google::Protobuf::Map{::String => ::String}) — Required. Prediction keys that tell Data Labeling Service where to find the
data for evaluation in your BigQuery table. When the service samples
prediction input and output from your model version and saves it to
BigQuery, the data gets stored as JSON strings in the BigQuery table. These
keys tell Data Labeling Service how to parse the JSON.
You can provide the following entries in this field:
data_json_key
: the data key for prediction input. You must provide either this key orreference_json_key
.reference_json_key
: the data reference key for prediction input. You must provide either this key ordata_json_key
.label_json_key
: the label key for prediction output. Required.label_score_json_key
: the score key for prediction output. Required.bounding_box_json_key
: the bounding box key for prediction output. Required if your model version perform image object detection.
#bigquery_import_keys=
def bigquery_import_keys=(value) -> ::Google::Protobuf::Map{::String => ::String}
-
value (::Google::Protobuf::Map{::String => ::String}) — Required. Prediction keys that tell Data Labeling Service where to find the
data for evaluation in your BigQuery table. When the service samples
prediction input and output from your model version and saves it to
BigQuery, the data gets stored as JSON strings in the BigQuery table. These
keys tell Data Labeling Service how to parse the JSON.
You can provide the following entries in this field:
data_json_key
: the data key for prediction input. You must provide either this key orreference_json_key
.reference_json_key
: the data reference key for prediction input. You must provide either this key ordata_json_key
.label_json_key
: the label key for prediction output. Required.label_score_json_key
: the score key for prediction output. Required.bounding_box_json_key
: the bounding box key for prediction output. Required if your model version perform image object detection.
-
(::Google::Protobuf::Map{::String => ::String}) — Required. Prediction keys that tell Data Labeling Service where to find the
data for evaluation in your BigQuery table. When the service samples
prediction input and output from your model version and saves it to
BigQuery, the data gets stored as JSON strings in the BigQuery table. These
keys tell Data Labeling Service how to parse the JSON.
You can provide the following entries in this field:
data_json_key
: the data key for prediction input. You must provide either this key orreference_json_key
.reference_json_key
: the data reference key for prediction input. You must provide either this key ordata_json_key
.label_json_key
: the label key for prediction output. Required.label_score_json_key
: the score key for prediction output. Required.bounding_box_json_key
: the bounding box key for prediction output. Required if your model version perform image object detection.
#bounding_poly_config
def bounding_poly_config() -> ::Google::Cloud::DataLabeling::V1beta1::BoundingPolyConfig
-
(::Google::Cloud::DataLabeling::V1beta1::BoundingPolyConfig) — Specify this field if your model version performs image object detection
(bounding box detection).
annotationSpecSet
in this configuration must match EvaluationJob.annotationSpecSet.
#bounding_poly_config=
def bounding_poly_config=(value) -> ::Google::Cloud::DataLabeling::V1beta1::BoundingPolyConfig
-
value (::Google::Cloud::DataLabeling::V1beta1::BoundingPolyConfig) — Specify this field if your model version performs image object detection
(bounding box detection).
annotationSpecSet
in this configuration must match EvaluationJob.annotationSpecSet.
-
(::Google::Cloud::DataLabeling::V1beta1::BoundingPolyConfig) — Specify this field if your model version performs image object detection
(bounding box detection).
annotationSpecSet
in this configuration must match EvaluationJob.annotationSpecSet.
#evaluation_config
def evaluation_config() -> ::Google::Cloud::DataLabeling::V1beta1::EvaluationConfig
-
(::Google::Cloud::DataLabeling::V1beta1::EvaluationConfig) — Required. Details for calculating evaluation metrics and creating
Evaulations. If your model version performs image object
detection, you must specify the
boundingBoxEvaluationOptions
field within this configuration. Otherwise, provide an empty object for this configuration.
#evaluation_config=
def evaluation_config=(value) -> ::Google::Cloud::DataLabeling::V1beta1::EvaluationConfig
-
value (::Google::Cloud::DataLabeling::V1beta1::EvaluationConfig) — Required. Details for calculating evaluation metrics and creating
Evaulations. If your model version performs image object
detection, you must specify the
boundingBoxEvaluationOptions
field within this configuration. Otherwise, provide an empty object for this configuration.
-
(::Google::Cloud::DataLabeling::V1beta1::EvaluationConfig) — Required. Details for calculating evaluation metrics and creating
Evaulations. If your model version performs image object
detection, you must specify the
boundingBoxEvaluationOptions
field within this configuration. Otherwise, provide an empty object for this configuration.
#evaluation_job_alert_config
def evaluation_job_alert_config() -> ::Google::Cloud::DataLabeling::V1beta1::EvaluationJobAlertConfig
- (::Google::Cloud::DataLabeling::V1beta1::EvaluationJobAlertConfig) — Optional. Configuration details for evaluation job alerts. Specify this field if you want to receive email alerts if the evaluation job finds that your predictions have low mean average precision during a run.
#evaluation_job_alert_config=
def evaluation_job_alert_config=(value) -> ::Google::Cloud::DataLabeling::V1beta1::EvaluationJobAlertConfig
- value (::Google::Cloud::DataLabeling::V1beta1::EvaluationJobAlertConfig) — Optional. Configuration details for evaluation job alerts. Specify this field if you want to receive email alerts if the evaluation job finds that your predictions have low mean average precision during a run.
- (::Google::Cloud::DataLabeling::V1beta1::EvaluationJobAlertConfig) — Optional. Configuration details for evaluation job alerts. Specify this field if you want to receive email alerts if the evaluation job finds that your predictions have low mean average precision during a run.
#example_count
def example_count() -> ::Integer
-
(::Integer) — Required. The maximum number of predictions to sample and save to BigQuery
during each evaluation interval. This limit
overrides
example_sample_percentage
: even if the service has not sampled enough predictions to fulfillexample_sample_perecentage
during an interval, it stops sampling predictions when it meets this limit.
#example_count=
def example_count=(value) -> ::Integer
-
value (::Integer) — Required. The maximum number of predictions to sample and save to BigQuery
during each evaluation interval. This limit
overrides
example_sample_percentage
: even if the service has not sampled enough predictions to fulfillexample_sample_perecentage
during an interval, it stops sampling predictions when it meets this limit.
-
(::Integer) — Required. The maximum number of predictions to sample and save to BigQuery
during each evaluation interval. This limit
overrides
example_sample_percentage
: even if the service has not sampled enough predictions to fulfillexample_sample_perecentage
during an interval, it stops sampling predictions when it meets this limit.
#example_sample_percentage
def example_sample_percentage() -> ::Float
- (::Float) — Required. Fraction of predictions to sample and save to BigQuery during each evaluation interval. For example, 0.1 means 10% of predictions served by your model version get saved to BigQuery.
#example_sample_percentage=
def example_sample_percentage=(value) -> ::Float
- value (::Float) — Required. Fraction of predictions to sample and save to BigQuery during each evaluation interval. For example, 0.1 means 10% of predictions served by your model version get saved to BigQuery.
- (::Float) — Required. Fraction of predictions to sample and save to BigQuery during each evaluation interval. For example, 0.1 means 10% of predictions served by your model version get saved to BigQuery.
#human_annotation_config
def human_annotation_config() -> ::Google::Cloud::DataLabeling::V1beta1::HumanAnnotationConfig
-
(::Google::Cloud::DataLabeling::V1beta1::HumanAnnotationConfig) — Optional. Details for human annotation of your data. If you set
labelMissingGroundTruth to
true
for this evaluation job, then you must specify this field. If you plan to provide your own ground truth labels, then omit this field.Note that you must create an Instruction resource before you can specify this field. Provide the name of the instruction resource in the
instruction
field within this configuration.
#human_annotation_config=
def human_annotation_config=(value) -> ::Google::Cloud::DataLabeling::V1beta1::HumanAnnotationConfig
-
value (::Google::Cloud::DataLabeling::V1beta1::HumanAnnotationConfig) — Optional. Details for human annotation of your data. If you set
labelMissingGroundTruth to
true
for this evaluation job, then you must specify this field. If you plan to provide your own ground truth labels, then omit this field.Note that you must create an Instruction resource before you can specify this field. Provide the name of the instruction resource in the
instruction
field within this configuration.
-
(::Google::Cloud::DataLabeling::V1beta1::HumanAnnotationConfig) — Optional. Details for human annotation of your data. If you set
labelMissingGroundTruth to
true
for this evaluation job, then you must specify this field. If you plan to provide your own ground truth labels, then omit this field.Note that you must create an Instruction resource before you can specify this field. Provide the name of the instruction resource in the
instruction
field within this configuration.
#image_classification_config
def image_classification_config() -> ::Google::Cloud::DataLabeling::V1beta1::ImageClassificationConfig
-
(::Google::Cloud::DataLabeling::V1beta1::ImageClassificationConfig) — Specify this field if your model version performs image classification or
general classification.
annotationSpecSet
in this configuration must match EvaluationJob.annotationSpecSet.allowMultiLabel
in this configuration must matchclassificationMetadata.isMultiLabel
in input_config.
#image_classification_config=
def image_classification_config=(value) -> ::Google::Cloud::DataLabeling::V1beta1::ImageClassificationConfig
-
value (::Google::Cloud::DataLabeling::V1beta1::ImageClassificationConfig) — Specify this field if your model version performs image classification or
general classification.
annotationSpecSet
in this configuration must match EvaluationJob.annotationSpecSet.allowMultiLabel
in this configuration must matchclassificationMetadata.isMultiLabel
in input_config.
-
(::Google::Cloud::DataLabeling::V1beta1::ImageClassificationConfig) — Specify this field if your model version performs image classification or
general classification.
annotationSpecSet
in this configuration must match EvaluationJob.annotationSpecSet.allowMultiLabel
in this configuration must matchclassificationMetadata.isMultiLabel
in input_config.
#input_config
def input_config() -> ::Google::Cloud::DataLabeling::V1beta1::InputConfig
-
(::Google::Cloud::DataLabeling::V1beta1::InputConfig) —
Rquired. Details for the sampled prediction input. Within this configuration, there are requirements for several fields:
dataType
must be one ofIMAGE
,TEXT
, orGENERAL_DATA
.annotationType
must be one ofIMAGE_CLASSIFICATION_ANNOTATION
,TEXT_CLASSIFICATION_ANNOTATION
,GENERAL_CLASSIFICATION_ANNOTATION
, orIMAGE_BOUNDING_BOX_ANNOTATION
(image object detection).- If your machine learning model performs classification, you must specify
classificationMetadata.isMultiLabel
. - You must specify
bigquerySource
(notgcsSource
).
#input_config=
def input_config=(value) -> ::Google::Cloud::DataLabeling::V1beta1::InputConfig
-
value (::Google::Cloud::DataLabeling::V1beta1::InputConfig) —
Rquired. Details for the sampled prediction input. Within this configuration, there are requirements for several fields:
dataType
must be one ofIMAGE
,TEXT
, orGENERAL_DATA
.annotationType
must be one ofIMAGE_CLASSIFICATION_ANNOTATION
,TEXT_CLASSIFICATION_ANNOTATION
,GENERAL_CLASSIFICATION_ANNOTATION
, orIMAGE_BOUNDING_BOX_ANNOTATION
(image object detection).- If your machine learning model performs classification, you must specify
classificationMetadata.isMultiLabel
. - You must specify
bigquerySource
(notgcsSource
).
-
(::Google::Cloud::DataLabeling::V1beta1::InputConfig) —
Rquired. Details for the sampled prediction input. Within this configuration, there are requirements for several fields:
dataType
must be one ofIMAGE
,TEXT
, orGENERAL_DATA
.annotationType
must be one ofIMAGE_CLASSIFICATION_ANNOTATION
,TEXT_CLASSIFICATION_ANNOTATION
,GENERAL_CLASSIFICATION_ANNOTATION
, orIMAGE_BOUNDING_BOX_ANNOTATION
(image object detection).- If your machine learning model performs classification, you must specify
classificationMetadata.isMultiLabel
. - You must specify
bigquerySource
(notgcsSource
).
#text_classification_config
def text_classification_config() -> ::Google::Cloud::DataLabeling::V1beta1::TextClassificationConfig
-
(::Google::Cloud::DataLabeling::V1beta1::TextClassificationConfig) — Specify this field if your model version performs text classification.
annotationSpecSet
in this configuration must match EvaluationJob.annotationSpecSet.allowMultiLabel
in this configuration must matchclassificationMetadata.isMultiLabel
in input_config.
#text_classification_config=
def text_classification_config=(value) -> ::Google::Cloud::DataLabeling::V1beta1::TextClassificationConfig
-
value (::Google::Cloud::DataLabeling::V1beta1::TextClassificationConfig) — Specify this field if your model version performs text classification.
annotationSpecSet
in this configuration must match EvaluationJob.annotationSpecSet.allowMultiLabel
in this configuration must matchclassificationMetadata.isMultiLabel
in input_config.
-
(::Google::Cloud::DataLabeling::V1beta1::TextClassificationConfig) — Specify this field if your model version performs text classification.
annotationSpecSet
in this configuration must match EvaluationJob.annotationSpecSet.allowMultiLabel
in this configuration must matchclassificationMetadata.isMultiLabel
in input_config.