Class BasicYarnAutoscalingConfig (5.6.0)

See more code actions.
BasicYarnAutoscalingConfig(mapping=None, *, ignore_unknown_fields=False, **kwargs)

Basic autoscaling configurations for YARN.

Attributes

NameDescription
graceful_decommission_timeout google.protobuf.duration_pb2.Duration
Required. Timeout for YARN graceful decommissioning of Node Managers. Specifies the duration to wait for jobs to complete before forcefully removing workers (and potentially interrupting jobs). Only applicable to downscaling operations. Bounds: [0s, 1d].
scale_up_factor float
Required. Fraction of average YARN pending memory in the last cooldown period for which to add workers. A scale-up factor of 1.0 will result in scaling up so that there is no pending memory remaining after the update (more aggressive scaling). A scale-up factor closer to 0 will result in a smaller magnitude of scaling up (less aggressive scaling). See `How autoscaling works
scale_down_factor float
Required. Fraction of average YARN pending memory in the last cooldown period for which to remove workers. A scale-down factor of 1 will result in scaling down so that there is no available memory remaining after the update (more aggressive scaling). A scale-down factor of 0 disables removing workers, which can be beneficial for autoscaling a single job. See `How autoscaling works
scale_up_min_worker_fraction float
Optional. Minimum scale-up threshold as a fraction of total cluster size before scaling occurs. For example, in a 20-worker cluster, a threshold of 0.1 means the autoscaler must recommend at least a 2-worker scale-up for the cluster to scale. A threshold of 0 means the autoscaler will scale up on any recommended change. Bounds: [0.0, 1.0]. Default: 0.0.
scale_down_min_worker_fraction float
Optional. Minimum scale-down threshold as a fraction of total cluster size before scaling occurs. For example, in a 20-worker cluster, a threshold of 0.1 means the autoscaler must recommend at least a 2 worker scale-down for the cluster to scale. A threshold of 0 means the autoscaler will scale down on any recommended change. Bounds: [0.0, 1.0]. Default: 0.0.